Skip to main content
Log in

Low-Velocity Impact Damage Due to Debris Particles Impacted on Titanium Alloy (Ti–6Al–4V) Gas Turbine Blades

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Millimeter-sized objects like engine components, sand particles, or debris impact on the gas turbine blades very frequently during operation of a gas turbine. This is one of the major concerns in the aviation industry, and various studies and research have been done throughout the decades in preventing the damage. Such impacts may not affect or damage the gas turbine blades but the frequent impact leads to the fatigue of the gas turbine blades and eventually to failure. The low-velocity impact analysis of gas turbine rotor blades in aviation has been presented in this study. Impact analysis of spherical steel balls as impactors of different masses on titanium-alloyed rotor blades is recorded and the result data are collected. To verify the present method, the numerical data are also compared to open literature. The analysis has been done using ANSYS software considering factors like meshing sizes, impactor size, and velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: John F. Welch Technology Centre, Bangalore

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T.J. Carter, Common failures in gas turbine blades. Eng. Fail. Anal. 12(2), 237–247 (2005)

    Article  Google Scholar 

  2. H. Nakatani, T. Kosaka, K. Osaka, Y. Sawada, Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact. Compos. A Appl. Sci. Manuf. 42(7), 772–781 (2011)

    Article  Google Scholar 

  3. J. Reiner, J.P. Torres, M. Veidt, M. Heitzmann, Experimental and numerical analysis of drop-weight low-velocity impact tests on hybrid titanium composite laminates. J. Compos. Mater. 50(26), 3605–3617 (2016)

    Article  Google Scholar 

  4. S.N. Safri, M.T. Sultan, N. Yidris, F. Mustapha, Low velocity and high velocity impact test on composite materials—a review. Int. J. Eng. Sci. 3(9), 50–60 (2014)

    Google Scholar 

  5. A. Das, T.D. Singha, A. Karmakar, Low velocity normal impact performance of functionally graded conical shell with simple power law. Mater. Today Proc. 11, 729–739 (2019)

    Article  Google Scholar 

  6. A. Das, M. Rout, A. Karmakar, Time dependent response of impact induced functionally graded conical shell considering porosity. Sādhanā 45(1), 1–5 (2020)

    Article  MathSciNet  Google Scholar 

  7. A. Das, R. Banerjee, A. Karmakar, Transient dynamic analysis of pretwisted functionally graded conical shells subject to low velocity impact: a finite element approach, in Gas Turbine India Conference, vol 58516 (American Society of Mechanical Engineers, 2017), p. V002T10A002

  8. A. Das, G. Agarwal, K. Inaba, A. Karmakar, Time dependent low velocity impact response of turbomachinery blade made of porous exponential FGM, in Gas Turbine India Conference, vol 83525 (American Society of Mechanical Engineers, 2019), p. V001T05A022

  9. A. Das, Study on CNT reinforced functionally graded sandwich conical shell subjected to low-velocity impact under thermal environment. Noise Vib. Worldwide 09574565221093233 (2022)

  10. D.P. Walls, R.E. Delaneuville, S.E. Cunningham, Damage tolerance based life prediction in gas turbine engine blades under vibratory high cycle fatigue. J. Eng. Gas Turbines Power 119, 143–146 (1997)

    Article  Google Scholar 

  11. J. Burns, Gas turbine engine blade life prediction for high cycle fatigue. The Technical Cooperation Program (TTCP), P-TP1 (1998)

  12. H.P. Singh, A. Rawat, A.R. Manral, P. Kumar, Computational analysis of a gas turbine blade with different materials. Mater. Today Proc. 44, 63–69 (2021)

    Article  Google Scholar 

  13. B.A. Cowles, High cycle fatigue in aircraft gas turbines—an industry perspective. Int. J. Fract. 80(2), 147–163 (1996)

    Article  Google Scholar 

  14. H.J. Kwon, D. Lee, Y.K. Lee, Failure analysis of blades and vanes of a compressor for a gas turbine engine. Eng. Fail. Anal. 124, 105386 (2021)

    Article  Google Scholar 

  15. P.C. Conor, Compressor blade high cycle fatigue life—case study. The Technical Cooperation Program (TTCP), P-TP1 (1998)

  16. D. Nowell, P. Duo, I.F. Stewart, Prediction of fatigue performance in gas turbine blades after foreign object damage. Int. J. Fatigue 25(9–11), 963–969 (2003)

    Article  Google Scholar 

  17. A. Das, A. Karmakar, Free vibration characteristics of functionally graded pre-twisted conical shells under rotation. J. Inst. Eng. (India) Ser. C 99(6), 681–692 (2018)

    Article  Google Scholar 

  18. A. Das, A. Karmakar, Temperature dependent natural modes for sigmoidal functionally graded conical shell. Mater. Today Proc. 11, A15-24 (2019)

    Article  Google Scholar 

  19. A. Saha, A. Das, A. Karmakar, First-ply failure analysis of delaminated rotating composite conical shells: a finite element approach. J. Inst. Eng. (India) Ser. C 99(6), 657–672 (2018)

    Article  Google Scholar 

  20. A. Saha, A. Das, A. Karmakar, Parametric study on the first ply failure load of delaminated shallow pretwisted conical shells–a finite element approach. Mater. Today Proc. 11, 818–829 (2019)

    Article  Google Scholar 

  21. S.M. Marandi, K. Rahmani, M. Tajdari, Foreign object damage on the leading edge of gas turbine blades. Aerosp. Sci. Technol. 33(1), 65–75 (2014)

    Article  Google Scholar 

  22. F. Olmi, K.D. Nascimento, Small debris impact simulation using MSC/DYTRAN, in 1999 MSC Worldwide Aerospace Conference Proceedings, vol 1 (1999)

  23. J.H. Gerstle, Analysis of rotor fragment impact on ballistic fabric engine burst containment shields. J. Aircr. 12(4), 388–393 (1975)

    Article  Google Scholar 

  24. B. Yang, Blade containment evaluation of civil aircraft engines. Chin. J. Aeronaut. 26(1), 9–16 (2013)

    Article  Google Scholar 

  25. M.W. Crowell, T.A. Schaedler, B.H. Hazel, D.G. Konitzer, R.M. McMeeking, A.G. Evans, Experiments and numerical simulations of single particle foreign object damage-like impacts of thermal barrier coatings. Int. J. Impact Eng. 48, 116–124 (2012)

    Article  Google Scholar 

  26. B. Swain, P. Mallick, S. Patel, R. Roshan, S.S. Mohapatra, S. Bhuyan, M. Priyadarshini, B. Behera, S. Samal, A. Behera, Failure analysis and materials development of gas turbine blades. Mater. Today Proc. 33, 5143–5146 (2020)

    Article  Google Scholar 

  27. K. Nehru, R. Asokan, Low cycle fatigue analysis of gas turbine blade. Natl. J. Adv. Build. Sci. Mech. 6(1), 5–9 (2015)

    Google Scholar 

  28. S. Ohte, H. Yoshizawa, N. Chiba, S. Shida, Impact strength of steel plates struck by projectiles: evaluation formula for critical fracture energy of steel plate. Bull. JSME. 25(206), 1226–1231 (1982)

    Article  Google Scholar 

  29. T. Mitrevski, I.H. Marshall, R. Thomson, R. Jones, B. Whittingham, The effect of impactor shape on the impact response of composite laminates. Compos. Struct. 67(2), 139–148 (2005)

    Article  Google Scholar 

  30. T. Mitrevski, I.H. Marshall, R. Thomson, The influence of impactor shape on the damage to composite laminates. Compos. Struct. 76(1–2), 116–122 (2006)

    Article  Google Scholar 

  31. W. Goldsmith, Impact: the theory and physical behavior of colliding solids. E. Arnold (1960)

  32. H.D. Conway, The indentation of a transversely isotropic half-space by a rigid punch. J. Appl. Math. Phys. 7(1), 80–85 (1956)

    MathSciNet  MATH  Google Scholar 

  33. E. Etemadi, A.A. Khatibi, M. Takaffoli, 3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact. Compos. Struct. 89(1), 28–34 (2009)

    Article  Google Scholar 

  34. A. Das, S. Pal, G. Agarwal, K. Inaba, T. Deb Singha, A. Karmakar, A study on low velocity impact behaviour of functionally graded sandwich conical shell under thermal environment, in Gas Turbine India Conference, vol 85536 (American Society of Mechanical Engineers, 2021), p. V001T10A001

  35. R.A. Larson, A. Palazotto, Low velocity impact analysis of functionally graded circular plates, in ASME International Mechanical Engineering Congress and Exposition, vol 47659 (2006), pp. 571–580

  36. A. Karmakar, K. Kishimoto, Transient dynamic response of delaminated composite rotating shallow shells subjected to impact. Shock. Vib. 13(6), 619–628 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledges Applied Mechanics laboratory, Mechanical Engineering Dept, Jadavpur, University and Applied mechanics Dept, IIEST, Shibpur for providing the research facility. The authors also acknowledge John F. Welch Technology Centre, Bangalore for the gas turbine blade image.

Funding

The author(s) received no financial support for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apurba Das.

Ethics declarations

Conflict of interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Nawaz, F., Das, A. et al. Low-Velocity Impact Damage Due to Debris Particles Impacted on Titanium Alloy (Ti–6Al–4V) Gas Turbine Blades. J. Inst. Eng. India Ser. D 104, 291–300 (2023). https://doi.org/10.1007/s40033-022-00372-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-022-00372-8

Keywords

Navigation