Skip to main content
Log in

Cold Glow Discharge Nitrogen Plasma Pretreatment of Banana Fibre for Improving the Mechanical Characterisation of Banana/Epoxy Composites

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Natural fibers are naturally supple and have various properties depending upon their chemical composition and physical aspects. Banana fiber is a derivative of the processing of the “banana plant’s pseudostem” (Musasepientum) the current research on the application of natural fiber composites has shown that the physical treatment of fibers improves their adherence to matrices. This works aims to investigate the effect of Cold glow discharge nitrogen plasma treatment on Musa sapientum (banana) fiber to modify the interfacial bonding of fiber-matrix, with cold glow discharge nitrogen plasma treatment 80 W (30 min) and 120 W (30 min) was being utilized. To improve the interfacial strength of banana fibers, induce a sufficient transfer of stress between the matrix and fiber. The cold glow discharge nitrogen plasma treatment 80 W (30 min.) of banana fiber provided the banana fiber reinforced epoxy composite(BFREC) has been found to have improved nearly 81.79% higher interlaminar shear strength, 66.16% higher flexural strength, and 57.54% higher tensile strength. To estimate the morphological characteristics for cold glow discharge nitrogen plasma treated banana fiber and untreated banana fibers performed by FT-IR spectroscopy and (XRD), which showed the improved fiber surface structure, better mechanical and tribological properties can be obtained, broaden the scope of green materials for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.G. Satyanarayana, G.C.A. Gregorio, F. Wypych, Biodegradable composites based on lignocellulosic fibers: an overview. Prog. Polym. Sci. 34, 982–1021 (2009). https://doi.org/10.1016/j.progpolymsci2008.12.002

    Article  Google Scholar 

  2. A. Dangi and D. Thakur, “Investigation of tribological properties and fabrication of sisal fiber reinforced polyester composite,” vol. 30, no. October, pp. 25–30, (2019)

  3. R. Gopakumar, R. Rajesh, Experimental study on the influence of fibre surface treatments and coconut shell powder addition on the compressive strength, hardness and tribological properties of sisal fibre-natural rubber composites. Int. J. Enterp. Netw. Manag. 10(1), 23–31 (2019). https://doi.org/10.1504/ijenm.2019.10019583

    Article  Google Scholar 

  4. X. Li, L.G. Tabil, S. Panigrahi, Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J. Polym. Environ. 15(1), 25–33 (2007)

    Article  Google Scholar 

  5. S. Kalia, K. Thakur, A. Celli, M.A. Kiechel, C.L. Schauer, Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: a review. J. Environ. Chem. Eng. 1, 97–112 (2013)

    Article  Google Scholar 

  6. G. Satyanarayana, J.L. Guimarães, F. Wypych, Studies on lignocellulosic fibers of Brazil. Part I: source, production morphology, properties and applications. Compos. Part A Appl. Sci. Manuf. 38(7), 1694–1709 (2007)

    Article  Google Scholar 

  7. G. Borcia, C.A. Anderson, N.M.D. Brown, Surface treatment of natural and synthetic textiles using a dielectric barrier discharge. Surf. Coat. Technol. 201(6), 3074–3081 (2006)

    Article  Google Scholar 

  8. F. Denes, L.D. Nielsen, R.A. Young, Cold plasma state—a new approach to improve surface adhesion in lignocellulosic-plastics composites. Lignocellul. Plast. Compos. 1, 61–110 (1997)

    Google Scholar 

  9. N. Vandencateele, F. Renier, Plasma modified polymer surface: characterization using XPS. J. Electron Spectrosc. Relat. Phenom. 394–408, 178–179 (2010)

    Google Scholar 

  10. M. Sarikanat, Y. Seki, K. Sever, E. Bozaci, A. Demir, E. Ozdogan, The effect of argon and air plasma treatment of flax fiber on mechanical properties of reinforced polyester composite. J. Ind. Text. 45(6), 1252–1267 (2016)

    Article  Google Scholar 

  11. D. Altgen, G. Avramidis, W. Viol, C. Mai, The effect of air plasma treatment at atnmospheric pressure on thermally modified wood surfaces. Wood Sci. Technol. 50, 1227–1241 (2016)

    Article  Google Scholar 

  12. B. Barra, B. Paulo, C. Alves Junior, H. Savastano Junior, K. Ghavami, Effects of methane cold plasma in sisal fibers. Key Eng. Mater. 517, 458–468 (2012)

    Article  Google Scholar 

  13. E. Sinha, S. Panigrahi, Effect of plasma pretreatment on structural wettability of jute fibre and flexural strength of its composite. J. Compos. Mater. 45, 1791–1802 (2009)

    Article  Google Scholar 

  14. D. Sun, G. Stylios, Fabric surface properties affected by low temperature plasma treatment. J. Mater. Process. Technol. 173(2), 172–177 (2006)

    Article  Google Scholar 

  15. A. Anna Sobczyk-Guzendaa, H. Szymanowskia, W. Jakubowskia, A. Błasińskab, J. Kowalskia, M. Gazicki-Lipmana, Morphology, photocleaning and water wetting properties of cotton fabrics, modified with titanium dioxide coatings synthesized with plasma enhanced chemical vapor deposition technique. Surf. Coat. Technol. 217(25), 51–57 (2013)

    Article  Google Scholar 

  16. Z. Zhou, X. Liu, B. Hu, J. Wang, D. Xin, Z. Wang, Y. Qiu, Hydrophobic surface modification of ramie fibres with ethanol pretreatment and atmospheric pressure plasma treatment. Surf. Coat. Technol. 205, 4205–4210 (2011)

    Article  Google Scholar 

  17. B.S. Kim, M.H. Nguyen, B.S. Hwang, S. Lee, Effect of plasma treatment on the mechanical properties of natural fibre/PP composites, in High performance structures and materials IV. WIT Transactions on built environment. ed. by W.P. De Wilde, C.A. Brebbia (WIT Press, Southampton, 2008), pp. 159–166

    Google Scholar 

  18. E. Bozaci, K. Sever, M. Sarikanat, Y. Seki, A. Demir, E. Ozdogan, I. Tavman, Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber–matrix for composite materials. Compos. Part B 45, 565–572 (2013)

    Article  Google Scholar 

  19. American Society for Testing and Materials—ASTM. ASTM C1557–03: Standard test method for tensile strength and young’s modulus of fibers. West Conshohocken, 15:787-796, (2010)

  20. D. Ren, Y. Zixuan, W. Li, H. Wang, Y. Yan, The effect of ages on the tensile mechanical properties of elementary fibers extracted from two sympodial bamboo species. Ind. Crops Prod. 62, 94–99 (2014). https://doi.org/10.1016/j.indcrop.2014.08.014

    Article  Google Scholar 

  21. A. Balaji, B. Karthikeyan, J. Swaminathan, Comparative mechanical, thermal, and morphological study of untreated and NaOH-treated bagasse fiber-reinforced cardanol green composites. Adv. Compos. Hybrid Mater. 2(1), 25–132 (2019)

    Google Scholar 

  22. M. Jacob, S. Thomas, K.K.T. Varughese, Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos. Sci. Technol. 64(7–8), 955–965 (2004)

    Article  Google Scholar 

  23. L. Wang, Z.-Q. Xiang, Y.-L. Bai et al., A plasma aided process for grey cotton fabric pretreatment. J. Clean. Prod. 54, 323–331 (2013)

    Article  Google Scholar 

  24. J. Jang, H. Yang, The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites. J. Mater. Sci. 35, 2297–2303 (2000). https://doi.org/10.1023/A:1004791313979

    Article  Google Scholar 

  25. H. Yasuda, Plasma Polymerisation (Rulla Academic Press Inc., United States of America, 1985), pp. 344–355

    Google Scholar 

  26. C. Fairfield, Optimization of Ion and Electron Properties in IC Packaging Applications,Nordson Corp., United States America, (2000), www.marchplasma.com

  27. C.W. Kan, K. Han, C.W.M. Yuen, M.H. Miao, Surface properties of low-temperature plasma treated wool fabrics. J. Mater. Process. Technol. 83(1–3), 180–184 (1998)

    Article  Google Scholar 

  28. B.K. Goriparthi, K.N.S. Suman, N. Mohan Rao, Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Compos. Part A Appl. Sci. Manuf. 43(10), 1800–1808 (2012)

    Article  Google Scholar 

  29. X. Yuan, K. Jayaraman, D. Bhattacharyya, Effects of plasma treatment in enhancing the performance of woodfibre-polypropylene composites. Compos. Part A-Appl. S 35, 1363–1374 (2004)

    Article  Google Scholar 

  30. C. Lu, P. Chen, Q. Yu, Z. Ding, Z. Lin, W. Li, Interfacial adhesion of plasma-treated carbon fiber/poly(phthalazinone ether sulfone ketone) composite. J. Appl. Polym. Sci. 106, 1733–1741 (2007)

    Article  Google Scholar 

  31. J. Jang, H. Yang, The effect of surfacetreatment on the performance improvement of carbon fiber/polybenzoxazine composites. J. Mater. Sci. 35, 2297–2303 (2000)

    Article  Google Scholar 

  32. M. Morra, E. Occhiello, F. Garbassi, Surface characterization of plasma-treated PTFE. Surf. Interface Anal. 16, 412–417 (1990)

    Article  Google Scholar 

  33. N. Dilsiz, E. Ebert, W. Weisweiler, G.A. Kovali, Effect of plasma polymerization on carbon-fibers used for fiber/epoxy composites. J. Colloid Interface Sci. 170, 241–248 (1995)

    Article  Google Scholar 

  34. F.R. Oliveira, L. Erkens, R. Fangueiro et al., Surface modification of banana fibers by DBD plasma treatment. Plasma Chem. Plasma Process 32, 259–273 (2012). https://doi.org/10.1007/s11090-012-9354-3

    Article  Google Scholar 

  35. R. Morent, N. De Geyter, J. Verschuren, K. De Clerck, P. Kiekens, C. Leys, Non-thermal plasma treatment of textiles. Surf. Coat. Technol. 202(14), 3427–3449 (2008)

    Article  Google Scholar 

  36. A. Baltazar-y-Jimenez, M. Bistritz, E. Schulz, A. Bismarck, Atmospheric air pressure plasma treatment of lignocellulosic fibres: impact on mechanical properties and adhesion to cellulose acetate butyrate. Compos. Sci. Technol. 68(1), 215–227 (2008)

    Article  Google Scholar 

  37. E. Bozaci, K. Sever, M. Sarikanat, Y. Seki, A. Demir, E. Ozdogan, I. Tavman, Effects of the atmospheric plasma treatments on surface and mechanical properties of flax fiber and adhesion between fiber–matrix for composite materials. Compos. Part B Eng. 45(1), 565–572 (2013). https://doi.org/10.1016/j.compositesb.2012.09.042

    Article  Google Scholar 

  38. E. Abraham, B. Deepa, L.A. Pothan, M. Jacob, S. Thomas, U. Cuelbar, R. Anandjiwala, Extraction of nanocellulose fibrils from lignocellulosic fibers. A novel approach. Carbohydr. Polym. 86(4), 1468–1475 (2011)

    Article  Google Scholar 

  39. D. Fengel, G. Wegener, In wood—Chemistry, ultrastructure, reactions (Walter de Gruyter, Berlin Germany, 1989)

    Google Scholar 

  40. M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, Effects of chemical treatments on hemp fibre structure. Appl. Surf. Sci. 276, 13–23 (2013)

    Article  Google Scholar 

  41. H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Characteristics of hemicelluloses, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2013)

    Article  Google Scholar 

  42. V. Udeye, S. Mopoung, The production of smokeless charcoal briquettes from banana peeland banana bunch for households use. Wulfenia 22, 454–468 (2015)

    Google Scholar 

  43. M. Akerholm, B. Hinterstoisser, L. Salmén, Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr. Res. 339, 569–578 (2004)

    Article  Google Scholar 

  44. S.Y. Oh, D.I. Yoo, Y. Shin, G. Seo, FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res. 340, 417–428 (2004)

    Article  Google Scholar 

  45. F. Carrilo, X. Colom, J.J. Sunol, J. Saurina, Strucutral FTIR analysis and the thermal characterization of lyocell and viscose-type fibers. Eur. Polym. J. 40, 2229–2234 (2004)

    Article  Google Scholar 

  46. S.C. Corgie, H.M. Smith, L.P. Walker, Enzymatic transformations of cellulose assessed by quantitative high-throughput fourier transform infrared spectroscopy (QHT-FTIR). Biotechnol. Bioeng. 108, 1509–1520 (2011)

    Article  Google Scholar 

  47. M.L. Nelson, R.T. O’Connor, Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. spectra of types I, II, III and of amorphous cellulose. J. Appl. Polym. Sci. 8, 1311–1324 (1964)

    Article  Google Scholar 

  48. M. Wada, T. Okano, Localization of Iα and Iβ phases in algal cellulose revealed by acid treatments. Cellulose 8, 183–188 (2001)

    Article  Google Scholar 

  49. U.J. Kim, S.H. Eom, M. Wada, Thermal decomposition of native cellulose: Influence on crystallite size. Polym. Degrad. Stab. 95, 778–781 (2010)

    Article  Google Scholar 

  50. E. Gumuskaya, M. Usta, H. Kirei, The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polym. Degrad. Stab. 81, 559–564 (2003)

    Article  Google Scholar 

  51. M.-C. Popescu, C.-M. Popescu, G. Lisa, Y. Sakata, Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J. Mol. Struct. 988, 65–72 (2011)

    Article  Google Scholar 

Download references

Funding

No funding was received by any of the authors on any level for research work to be carried.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upendra Sharan Gupta.

Ethics declarations

Conflict of interest

The authors whose names are listed have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, U.S., Tiwari, S., Sharma, U. et al. Cold Glow Discharge Nitrogen Plasma Pretreatment of Banana Fibre for Improving the Mechanical Characterisation of Banana/Epoxy Composites. J. Inst. Eng. India Ser. D 103, 417–429 (2022). https://doi.org/10.1007/s40033-022-00356-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-022-00356-8

Keywords

Navigation