Skip to main content
Log in

An Insight into Nylon 6,6 Nanofibers Interleaved E-glass Fiber Reinforced Epoxy Composites

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

The research work aims to investigate high-performance nylon 6,6 nanofiber interleaved E-glass fiber reinforced epoxy laminates (prepared using the electrospinning method) which exhibit unique design features in terms of improved mechanical strength. The influences of electrospinning control variables such as the nozzle of spinneret to grounded collector distance, rate of flow, high-voltage power supply, and concentration of polymeric solution to create high-quality nanofibers of specific length and diameter in nanometers are examined. The objectives of the current investigations are to develop delamination-resistant nylon 6,6 nanofibers interleaved E-glass fiber reinforced epoxy structural nanocomposites. The research efforts are thus focused to use electrospinning, vacuum assisted resin transfer molding (VARTM), and glass molding processes to fabricate nanocomposites with electrospun nylon 6,6 nanofibers. The specimens are described and evaluated in accordance with ASTM standards for tensile strength (D 638), flexural or bending strength (D 790-2003) of two-phase composites, and the hand molding or hand layup method are compared to the VARTM process. Two-phase nanocomposites containing nylon 6,6 nanofibers into the polymer matrix (Epolam 5015) are fabricated by glass molding process. The advanced composites are manufactured with primary reinforcement of eight-shaft satin weave pattern glass fiber 7781, with Epolam 5015 matrix and secondary reinforcement of nylon 6, 6 nanofibers with different diameters, i.e., 81, 455, and 1200 nm (multiscale). To achieve the different diameter fibers, statistical tools of design of experiment (DOE), full factorial and Taguchi are employed. Further they are characterized with (1) short beam shear strength (SBS) using ASTM 2344 standard for interlaminar shear strength and (2) double cantilever beam (DCB) using ASTM 5288 standard for Mode I fracture toughness for of three-phase nanocomposites. For better understanding the behavior of nanocomposites, the shear strength between laminate planes, or interlaminar shear strength (ILSS), of nylon 6,6 nanofiber interleaved composites is modeled using the finite element technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. R. Khajavi, M. Abbasipour, Electrospinning as a versatile method for fabricating core shell, hollow and porous nanofibers. Scientia Iranica Trans. F: Nanotechnol. 19(6), 2029–2034 (2012). https://doi.org/10.1016/j.scient.2012.10.037

    Article  Google Scholar 

  2. J.L. Skinner, J.M. Andriolo, J.P. Murphy, B.M. Ross, Electrospinning for nano- to mesoscale photonic structures. Nanophotonics 6(5), 765–787 (2017). https://doi.org/10.1515/nanoph-2016-0142

    Article  Google Scholar 

  3. J.-W. Lu, Y.-L. Zhu, Z.-X. Guo, P. Hu, J. Yu, Electrospinning of sodium alginate with poly(ethylene oxide). Polymer 47(23), 8026–8031 (2006). https://doi.org/10.1016/j.polymer.2006.09.027

    Article  Google Scholar 

  4. D.H. Reneker, I. Chun, Nanometer diameter fibers of polymer, produced by electrospinning. Nanotechnology 7, 216–223 (1996)

    Article  Google Scholar 

  5. F. Kayaci, H.S. Sen, E. Durgun, T. Uyar, Electrospun nylon 6,6 nanofibers functionalized with cyclodextrins for removal of toluene vapor. J. Appl. Polym. Sci. 132(18), 41941 (2015). https://doi.org/10.1002/app.41941

    Article  Google Scholar 

  6. M.R. Mousavi, M. Rafizadeh, F. Sharif, Investigation of effect of electrospinning parameters on morphology of polyacrylonitrile/polymethylmethacrylate nanofibers: A Box-Behnken-based study. J. Macromol. Sci. Part B Phys. 54(8), 975–991 (2015). https://doi.org/10.1080/00222348.2015.1042628

    Article  Google Scholar 

  7. S. Jiang, A. Greiner, S. Agarwal, Short nylon-6 nanofiber reinforced transparent and high modulus thermoplastic polymeric composites. Compos. Sci. Technol. 87, 164–169 (2013). https://doi.org/10.1016/j.compscitech.2013.08.011

    Article  Google Scholar 

  8. N.J. Kanu, E. Gupta, U.K. Vates, G.K. Singh, Electrospinning process parameters optimization for biofunctional curcumin/gelatin nanofibers. Mater. Res. Express. 3, 035022 (2020). https://doi.org/10.1088/2053-1591/ab7f60

    Article  Google Scholar 

  9. D.C. Montgomery, Design and Analysis of Experiments, 8th edn (John Wiley & Sons, 2014). ISBN 1621982270, 9781621982272.

  10. J.R. Phillip, Taguchi techniques for quality engineering. McGraw-Hill Book Company 5(3), 249 (1989). https://doi.org/10.1002/qre.4680050312

    Article  Google Scholar 

  11. L. Huang, J. Mccutcheon, Hydrophilic nylon 6,6 nanofibers supported thin film composite membranes for engineered osmosis. J. Membr. Sci. 457, 162–169 (2014). https://doi.org/10.1016/j.memsci.2014.01.040

    Article  Google Scholar 

  12. C.-W. Lo, J.-X. Li, Lu. Ming-Chang, Frosting and defrosting on the hydrophilic nylon-6 nanofiber membrane–coated surfaces. Appl. Therm. Eng. 184, 116300 (2021). https://doi.org/10.1016/j.applthermaleng.2020.116300

    Article  Google Scholar 

  13. T.M. Subrahmanya, A.B. Arshad, P.T. Lin, J. Widakdo, H.K. Makari, F.M. Hannah, C.-C. Austria, J.-Y. Lai, W.-S. Hung, A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues. RSC Adv. 11, 9638–9663 (2021). https://doi.org/10.1039/d1ra00060h

    Article  Google Scholar 

  14. A. Keirouz, N. Radacsi, Q. Ren, A. Dommann, G. Beldi, K. Maniura-Weber, R.M. Rossi, G. Fortunato, Nylon-6/chitosan core/shell antimicrobial nanofibers for the prevention of mesh-associated surgical site infection. J. Nanobiotechnology 18, 51 (2020). https://doi.org/10.1186/s12951-020-00602-9

    Article  Google Scholar 

  15. S.S. Chavan, K.M. Sinha, P.V. Londhe, Synthesis and characterization of composite nanofibers with VARTM and electrospinning process. Carbon Sci. Technol. 5(3), 289–295 (2013)

    Google Scholar 

  16. M. Bulut, M. Alsaadi, A. Erkliğ, A comparative study on the interlaminar shear strength of S-glass/epoxy composites containing borax, perlite and sewage sludge ash particles. Mater. Res. Express 6(9), 095330 (2019). https://doi.org/10.1088/2053-1591/ab3360

    Article  Google Scholar 

  17. X. Niu, L. Wang, M. Xu, M. Qin, L. Zhao, W. Yan, Y. Hu, X. Lian, Z. Liang, S. Chen, W. Chen, D. Huang, Electrospun polyamide-6/chitosan nanofibers reinforced nano-hydroxyapatite/polyamide-6 composite bilayered membranes for guided bone regeneration. Carbohydr. Polym. 260, 117769 (2021). https://doi.org/10.1016/j.carbpol.2021.117769

    Article  Google Scholar 

  18. B. Li, S. Wei, H. Xuan, Y. Xue, H. Yuan, Tailoring fineness and content of nylon-6 nanofibers for reinforcing optically transparent poly(methyl methacrylate) composites. Polym. Compos. 42(7), 3243–3252 (2021). https://doi.org/10.1002/pc.26054

    Article  Google Scholar 

  19. I. Sriyanti, M.P. Agustini, J. Jauhari, S. Sukemi, Z. Nawawi, Electrospun nylon-6 nanofibers and their characteristics. Jurnal Ilmiah Pendidikan Fisika Al-BiRuNi 9(1), 9–19 (2020). https://doi.org/10.24042/jipfalbiruni.v9i1.5747

    Article  Google Scholar 

  20. S.S. Abdelhady, S.H. Zoalfakar, M.A. Agwa, A.A. Ali, Electrospinning process optimization for Nylon 6,6/Epoxy hybrid nanofibers by using Taguchi method. Mater. Res. Express 6, 095314 (2019). https://doi.org/10.1088/2053-1591/ab3021

    Article  Google Scholar 

  21. S.S. Abdelhady, S.H. Zoalfakar, M.A. Agwa, A.A. Ali, Mechanical and thermal characteristics of optimized electrospun nylon 6,6 nanofibers by using Taguchi method. NANO 14(11), 1950 (2019). https://doi.org/10.1142/S179329201950139X

    Article  Google Scholar 

  22. M.T. Aljarrah, N.R. Abdelal, Improvement of the mode I interlaminar fracture toughness of carbon fiber composite reinforced with electrospun nylon nanofiber. Compos. B Eng. 165, 379–385 (2019). https://doi.org/10.1016/j.compositesb.2019.01.065

    Article  Google Scholar 

  23. E. Ahmadloo, A.A. Gharehaghaji, M. Latifi, H. Saghafi, N. Mohammadi, Effect of PA66 nanofiber yarn on tensile fracture toughness of reinforced epoxy nanocomposite. Proc IMechE Part C: J Mech. Eng. Sci. (2018). https://doi.org/10.1177/0954406218781910

    Article  Google Scholar 

  24. ASTM D 4762-18, Standard Guide for Testing Polymer Matrix Composite Materials (ASTM International, USA, 2008)

  25. ASTM D 2344/D2344M-16, Standard Test Method for Short-beam Strength of Polymer Matrix Composite Materials and their Laminates (ASTM International, USA, 2016)

  26. ASTM D 638-14, Standard Test Method for Tensile Properties of Plastics (ASTM International, USA, 2014)

  27. E. Zussman, M. Burman, A.L. Yarin, R. Khalfin, Y. Cohen, Tensile deformation of electrospun nylon-6,6 nanofibers. J. Polym. Sci. Part B: Polym. Phys. 44(10), 1482–1489 (2006). https://doi.org/10.1002/polb.20803

    Article  Google Scholar 

  28. R. Palazzetti, Electrospun nanofibrous interleaves in composite laminate materials. PhD Thesis, University of Bologna (2014)

  29. I. Alghoraibi, Fabrication and characterization of polyamide-66 nanofibers via electrospinning technique: effect of concentration and viscosity. Int. J. ChemTech Res. 7(01), 20–27 (2015)

    Google Scholar 

  30. F. Kayaci, H.S. Sen, E. Durgun, T. Uyar, Electrospun nylon 6,6 nanofibers functionalized with cyclodextrins for removal of toluene vapor. J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.41941

    Article  Google Scholar 

  31. A. Anand, N. Kumar, R. Harshe, M. Joshi, Glass/epoxy structural composites with interleaved nylon 6/6 nanofibers. J. Compos. Mater. 51(23), 3291–3298 (2016). https://doi.org/10.1177/0021998316682603

    Article  Google Scholar 

  32. B. Beylergil, M. Tanoglu, E. Aktas, Enhancement of interlaminar fracture toughness of carbon fiber–epoxy composites using polyamide-6,6 electrospun nanofibers. J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.45244

    Article  Google Scholar 

  33. T.V. Kumar, M. Chandrasekaran, V. Santhanam, N. Udayakumar, Characterization of nylon 6 nano fiber/E-glass fiber reinforced epoxy composites. IOP Conf. Ser.: Mater. Sci. Eng. 183, 012002 (2017). https://doi.org/10.1088/1757-899X/183/1/012002

    Article  Google Scholar 

  34. M.K. Akkapeddi, Glass fiber reinforced polyamide-6 nanocomposites. Polym. Compos. 21(4), 576–585 (2000). https://doi.org/10.1002/pc.10213

    Article  Google Scholar 

  35. S.M. Kale, P.M. Kirange, T.V. Kale, N.J. Kanu, E. Gupta, S.S. Chavan, U.K. Vates, G.K. Singh, Synthesis of ultrathin ZnO, nylon-6,6 and carbon nanofibers using electrospinning method for novel applications. Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2021.06.289

    Article  Google Scholar 

  36. N.J. Kanu, A. Lal, Nonlinear static and dynamic performance of CNT reinforced and nanoclay modified laminated nanocomposite plate. AIP Adv. 12, 025102 (2022). https://doi.org/10.1063/5.0074987

    Article  Google Scholar 

  37. N.J. Kanu, Modeling of stress wave propagation in matrix cracked laminates. AIP Adv. 11, 085217 (2021). https://doi.org/10.1063/5.0057749

    Article  Google Scholar 

  38. A. Lal, N.J. Kanu, The nonlinear deflection response of CNT/nanoclay reinforced polymer hybrid composite plate under different loading conditions. IOP Conf. Ser.: Mater. Sci. Eng. 814, 012033 (2020). https://doi.org/10.1088/1757-899X/814/1/012033

    Article  Google Scholar 

  39. N.J. Kanu, E. Gupta, V. Sutar, G.K. Singh, U.K. Vates, An insight into biofunctional curcumin/gelatin nanofibers, in Nanofibers. Nanofibers—Synthesis, Properties and Applications, ed. by B. Kumar (IntechOpen, 2021). https://doi.org/10.5772/intechopen.97113

Download references

Funding

The authors have not been funded in any way to carry out the research activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Chavan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I: Properties of Glass Fiber 7781

figure a

Appendix II: Properties of Epoxy Epolam5015

figure b
figure c

Appendix III: EPON-862 Resin Properties

figure d
figure e
figure f
figure g
figure h

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavan, S., Kanu, N.J., Shendokar, S. et al. An Insight into Nylon 6,6 Nanofibers Interleaved E-glass Fiber Reinforced Epoxy Composites. J. Inst. Eng. India Ser. C 104, 15–44 (2023). https://doi.org/10.1007/s40032-022-00882-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-022-00882-0

Keywords

Navigation