Skip to main content
Log in

Optimization of Electroless Nickel Tungsten Composite Coating on 3D-Printed ABS Substrate for Maximum Tungsten Content

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Electroless nickel phosphorous tungsten (Ni-P-W) coating is widely used to improve the wear and hardness of steel. Studies on the composite coating of plastics, and in particular, additive manufactured parts are lacking. Many applications are demanding high hardness and high-temperature stability of the 3D-printed parts. The purpose of this work is to study the electroless Ni-P-W composite coating on the digital acrylonitrile butadiene styrene (ABS) substrate, 3D printed by polyjet technology. Scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD) are used to study structural morphology, composition, and phase structure of the coating, respectively. Electroless Ni-P-W coating on digital ABS-printed parts was successfully carried and optimized for maximum tungsten content in the coating. Finally the thermal stabilities of developed coating are compared with electroless nickel coating. The study revealed that the low level of pH and sodium tungstate in the bath results in the maximum percentage of tungsten in the coating with higher hardness. SEM and EDX analyses show a smooth crack-free surface with 4.77 wt.% of tungsten in the coating, respectively. XRD studies of the coating show amorphous nature of the coating at low pH with maximum tungsten content while at high pH, the tungsten content reduces, and the coating becomes crystalline. The developed electroless nickel tungsten composite coating with higher thermal stability can enhance the use of 3D-printed ABS parts in many applications like rapid tooling for injection moulding, electric discharge machine (EDM) tooling and electronic industries for electromagnetic shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Raja, A review on chemical processes for plastics substrates used in engineering industries. Int. J. Tech. Res. 9, 354–365 (2016)

    Google Scholar 

  2. C. Udayagiri, M. Kulkarni, B. Esakki, Experimental studies on 3D printed parts for rapid prototyping of micro aerial vehicles. J. Appl. Sci. Eng. 19, 17–22 (2016). https://doi.org/10.6180/jase.2016.19.1.03

    Article  Google Scholar 

  3. S. Daneshmand, C. Aghanajafi, The effect of chromium coating in RP technology for airfoil. Sadhana 35, 569–584 (2010)

    Article  Google Scholar 

  4. J.S. Chohan, R. Singh, Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. Rapid Prototyp. J. 23(3), 495–513 (2006). https://doi.org/10.1108/RPJ-05-2015-0059

    Article  Google Scholar 

  5. S. Olivera, Plating on acrylonitrile – butadiene—styrene (ABS) plastic: a review. J. Mater. Sci. (2016). https://doi.org/10.1007/s10853-015-9668-7

  6. J.S. Lian, J.G. He, Q. Jiang, et al., Electroless deposition of Ni–W–P coating on AZ91D magnesium alloy. Appl. Surf. Sci. 253, 5116–5121 (2006). https://doi.org/10.1016/j.apsusc.2006.11.022

    Article  Google Scholar 

  7. V. Vitry, L. Bonin, L. Malet, Chemical , morphological and structural characterisation of electroless duplex NiP/NiB coatings on steel. Surf. Eng. 34(6), 475–484 (2018). https://doi.org/10.1080/02670844.2017.1320032

    Article  Google Scholar 

  8. S.Q. Jiang, C.W. Kan, C.W.M. Yuen, W.K. Wong, Electroless nickel plating of polyester fiber. J. Appl. Polym. Sci. 108, 2630–2637 (2008). https://doi.org/10.1002/app

    Article  Google Scholar 

  9. H. Zhang, L. Shen, J. Chang, Comparative study of electroless ni-p, cu, ag, and cu-ag plating on polyamide fabrics. J. Ind. Text. 41, 25–40 (2011). https://doi.org/10.1177/1528083710387176

    Article  Google Scholar 

  10. K. Liu, L. Liu, X.P. Liang, et al., The effect of pH value of plating bath on the properties of electroless Ni-P coating on phenolic plastic substrate. Key Eng. Mater. 633, 330–335 (2014). https://doi.org/10.4028/www.scientific.net/kem.633.330

    Article  Google Scholar 

  11. H. Liu, F. Viejo, R.X. Guo, et al., Surface & coatings technology microstructure and corrosion performance of laser-annealed electroless Ni–W–P coatings. Surf. Coat. Technol. 204, 1549–1555 (2010). https://doi.org/10.1016/j.surfcoat.2009.09.074

    Article  Google Scholar 

  12. S. Roy, P. Sahoo, Friction performance optimization of chemically deposited Ni-P-W coating using Taguchi method. Int. Sch. Res. Not. https://doi.org/10.5402/2013/136740

    Article  Google Scholar 

  13. J. Li, D. Wang, H. Cai, et al., Competitive deposition of electroless Ni-W-P coatings on mild steel via a dual-complexant plating bath composed of sodium citrate and lactic acid. Surf. Coat. Technol. 279, 9–15 (2015). https://doi.org/10.1016/j.surfcoat.2015.08.017

    Article  Google Scholar 

  14. C. Yanhai, Effect of tungsten addition on the anti-fouling property of the electroless Ni-W-P deposits. Rare Met. Mater. Eng. 45, 1931–1937 (2016). https://doi.org/10.1016/S1875-5372(16)30149-7

    Article  Google Scholar 

  15. M.C.L. de Oliveira, O.V. Correa, B. Ett, et al., Influence of the tungsten content on surface properties of electroless Ni-W-P coatings. Mater. Res. 21(1) (2017). https://doi.org/10.1590/1980-5373-MR-2017-0567

  16. M.S.A. Eltoum, Electroless and corrosion of nickel-phosphorus-tungsten alloy. J. Middle East North Africa Sci. 2, 16–24 (2016)

    Article  Google Scholar 

  17. X. Shu, Y. Wang, X. Lu, et al., Parameter optimization for electroless Ni-W-P coating. Surf. Coat. Technol. 276, 195–201 (2015). https://doi.org/10.1016/j.surfcoat.2015.06.068

    Article  Google Scholar 

  18. H. Ying, H. Fei, Z. Wentao, et al., The study of electroless Ni-W-P alloy plating on glass fibers. Rare Metals 26, 365 (2007)

    Article  Google Scholar 

  19. S.C. Sagar, B. Raju, Research article processing of eletroless Ni-P-W Ni W coated nanocenosphere/polymer composite for EMI shielding application. Int. J. Curr. Res. 9, 45672–45677 (2017)

    Google Scholar 

  20. J.C. Rajaguru, M. Duke, C. Au, Investigation of electroless nickel plating on rapid prototyping material of acrylic resin. Rapid Prototyp. J. 22, 162–169 (2016). https://doi.org/10.1108/RPJ-05-2014-0060

    Article  Google Scholar 

  21. J. Rajaguru, M. Duke, C. Au, Development of rapid tooling by rapid prototyping technology and electroless nickel plating for low-volume production of plastic parts. Int. J. Adv. Manuf. Technol. 78(1–4), 31–40 (2015). https://doi.org/10.1007/s00170-014-6619-4

    Article  Google Scholar 

  22. A. Equbal, A.K. Sood, Problems and challenges in EDM electrode fabrication using RP: a critical review. World Appl. Sci. J. 28(8), 1127–1133 (2013). https://doi.org/10.5829/idosi.wasj.2013.28.08.1461

    Article  Google Scholar 

  23. Mohanam K, Surface morphological studies of metallized plastics rapid prototypes. Int. J. Mech. Eng. Technol. 8, 368–376 (2017)

    Google Scholar 

  24. A. Kumar, A. Equbal, V. Toppo, et al., An investigation on sliding wear of FDM built parts. CIRP J. Manuf. Sci. Technol. 5, 48–54 (2012). https://doi.org/10.1016/j.cirpj.2011.08.003

    Article  Google Scholar 

  25. S. Kannan, Assessment of mechanical properties of Ni-coated ABS plastics using FDM process. Int. J. Mech. Mechatron. Eng. 14(3), 30–35 (2014)

    Google Scholar 

  26. J.N. Balaraju, S. Millath Jahan, C. Anandan, K.S. Rajam, Studies on electroless Ni-W-P and Ni-W-Cu-P alloy coatings using chloride-based bath. Surf. Coat. Technol. 200, 4885–4890 (2006). https://doi.org/10.1016/j.surfcoat.2005.04.053

    Article  Google Scholar 

  27. J.N. Balaraju, N.T. Manikandanath, V.K. William Grips, Phase transformation behavior of nanocrystalline Ni-W-P alloys containing various W and P contents. Surf. Coat. Technol. 206, 2682–2689 (2012). https://doi.org/10.1016/j.surfcoat.2011.11.024

    Article  Google Scholar 

  28. Z. Bangwei, H. Wangyu, Z. Qinglong, Q. Xuanyuan, Properties of electroless Ni-W-P amorphous alloys. Mater Charact 37, 119–122 (1996). https://doi.org/10.1016/S1044-5803(96)00089-7

    Article  Google Scholar 

  29. A.A. Arthur, D. PMB, The measurement of heat distribution in stereolithography electrodes during electro-discharge machining. Int. J. Prod. Res. 36, 2451–2461 (1998). https://doi.org/10.1080/002075498192625

    Article  MATH  Google Scholar 

  30. J. Kechagias, V. Iakovakis, M. Katsanos, S. Maropoulos, EDM electrode manufacture using rapid tooling: a review. J. Mater. Sci. 43, 2522–2535 (2008). https://doi.org/10.1007/s10853-008-2453-0

    Article  Google Scholar 

  31. Objet (2012) New objet materials: the power behind your 3D printer

  32. I. Baskaran, T.S.N.S. Narayanan, A. Stephen, Effect of accelerators and stabilizers on the formation and characteristics of electroless Ni-P deposits. Mater. Chem. Phys. 99, 117–126 (2006). https://doi.org/10.1016/j.matchemphys.2005.10.001

    Article  Google Scholar 

  33. Z. Xie, G. Yu, B. Hu, et al., Effects of (NH4)2SO4 on the characteristics of the deposits and properties of an electroless Ni-P plating solution. Appl. Surf. Sci. 257, 5025–5031 (2011). https://doi.org/10.1016/j.apsusc.2011.01.016

    Article  Google Scholar 

  34. O. Younes, Electroplating of high tungsten content Ni/W alloys. Electrochem. Solid St. 3, 543 (2002). https://doi.org/10.1149/1.1391203

    Article  Google Scholar 

  35. J.K. Cho, S.W. Park, S.G. Kang, S. Son, The effect of complexing agents on the deposit characteristics in the electroless nickel-tungsten-phosphorus plating. J. Korean Inst. Metals Mater. 46, 725–729 (2008)

    Google Scholar 

  36. S. Lee, L. Do, J. Lee, H. Peng, Process design of micro-arc oxidation coatings based on magnesium lithium alloy and their characteristics. Int. J. Electrochem. Sci. 12, 11256–11270 (2017). https://doi.org/10.20964/2017.12.64

    Article  Google Scholar 

  37. M.A. Maleque, K.A. Bello, A.A. Adebisi, N. Akma, Optimization of tribological performance of SiC embedded composite coating via Taguchi analysis approach Optimization of tribological performance of SiC embedded composite coating via Taguchi analysis approach. IOP Conf. Ser. Mater. Sci. Eng. 184(1) (2017). https://doi.org/10.1088/1742-6596/755/1/011001

  38. N. Du, M. Pritzker, Investigation of electroless plating of Ni–W–P alloy films. J. Appl. Electrochem. 33(11), 1001–1009 (2003)

    Article  Google Scholar 

  39. S. Roy, P. Sahoo, An experimental approach for optimizing coating parameters of electroless Ni-P-Cu coating using artificial Bee colony algorithm. Int. Sch. Res. Notices 2014, 976869 (2014). https://doi.org/10.1155/2014/976869

    Article  Google Scholar 

  40. O.O. Ajibola, Evaluation of electroless-nickel plated polypropylene under thermal cycling and mechanical tests. Tribol. Ind. 38, 412–424 (2016)

    Google Scholar 

  41. C. Zhao, Y. Yao, Preparation and mechanical properties of electroless nickel-phosphorus- tungsten carbide nanocomposite coatings. J. Mater. Eng. Perform. 23, 193–197 (2014). https://doi.org/10.1007/s11665-013-0753-2

    Article  Google Scholar 

  42. X. Shu, Y. Wang, X. Lu, et al., Parameter optimization for electroless Ni-W-P coating. Surf. Coat. Technol. 276, 195–201 (2015). https://doi.org/10.1016/j.surfcoat.2015.06.068

    Article  Google Scholar 

  43. N. Neeli, M.P. Jenarthanan, G. Dileep Kumar, Multi-response optimization for machining GFRP composites using GRA and DFA. Multidiscip. Model. Mater. Struct. 14, 482–496 (2018). https://doi.org/10.1108/MMMS-08-2017-0092

    Article  Google Scholar 

  44. G. Derringer, R. Suich, Simultaneous optimization of several response variables. J. Qual. Technol. 12, 214–219 (1980). https://doi.org/10.1080/00224065.1980.11980968

    Article  Google Scholar 

  45. Q.M. Usman Jan, T. Habib, S. Noor, et al., Multi response optimization of injection moulding process parameters of polystyrene and polypropylene to minimize surface roughness and shrinkage’s using integrated approach of S/N ratio and composite desirability function. Cogent. Eng. 7(1), 1781424 (2020). https://doi.org/10.1080/23311916.2020.1781424

    Article  Google Scholar 

  46. J.N. Balaraju, R.K.S. Kalavati, Surface morphology and structure of electroless ternary NiWP deposits with various W and P contents. J. Alloys Compd. 486, 468–473 (2009). https://doi.org/10.1016/j.jallcom.2009.06.173

    Article  Google Scholar 

  47. R. Elansezhian, B. Ramamoorthy, P.K. Nair, The influence of SDS and CTAB surfactants on the surface morphology and surface topography of electroless Ni–P deposits. J. Mater. Process. Technol. 9, 233–240 (2008). https://doi.org/10.1016/j.jmatprotec.2008.01.057

    Article  Google Scholar 

  48. N.O. Nwosu, A.M. Davidson, C.S. Hindle, Effect of sodium dodecyl sulphate on the composition of electroless nickel—Yttria stabilized zirconia coatings. Adv. Chem. Eng. Sci. 2011, 118–124 (2011). https://doi.org/10.4236/aces.2011.13018

    Article  Google Scholar 

  49. R.C. Agarwala, V. Agarwala, Electroless alloy/composite coatings. Front. Mater. Sci. 28, 475–493 (2005)

    Google Scholar 

  50. F.B. Wu, S.K. Tien, W.Y. Chen, J.G. Duh, Microstructure evaluation and strengthening mechanism of Ni–P–W alloy coatings. Surf. Coat. Technol. 178, 312–316 (2004). https://doi.org/10.1016/j.surfcoat.2003.09.010

    Article  Google Scholar 

  51. Y. Hu, T. Wang, J. Meng, Q. Rao, Structure and phase transformation behaviour of electroless Ni – W – P on aluminium alloy. Surf. Coat. Technol. 201, 988–992 (2006). https://doi.org/10.1016/j.surfcoat.2006.01.012

    Article  Google Scholar 

  52. T. Hentschel, D. Isheim, R. Kirchheim, et al., Nanocrystalline Ni-3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy. Acta Mater. 48, 933–941 (2000). https://doi.org/10.1016/S1359-6454(99)00371-7

    Article  Google Scholar 

  53. Y. Lu, L. Xue, F. Li, Adhesion enhancement between electroless nickel and polyester fabric by a palladium-free process. Appl. Surf. Sci. 257, 3135–3139 (2011). https://doi.org/10.1016/j.apsusc.2010.10.129

    Article  Google Scholar 

  54. Y.-Y. Tsai, F.-B. Wu, Y.-I. Chen, et al., Thermal stability and mechanical properties of Ni–W–P electroless deposits. Surf. Coat. Technol. 146–147, 502–507 (2001). https://doi.org/10.1016/s0257-8972(01)01462-1

    Article  Google Scholar 

Download references

Acknowledgments

This paper is a revised and expanded version of an article entitled, ‘Optimization of Electroless Nickel Tungsten Composite Coating on 3D-Printed ABS Substrate for Maximum Tungsten Content’ presented in ‘7th International Conference on Advancements and Futuristic Trends in Mechanical and Materials Engineering’ held at Indian Institute of Technology Ropar, Roopnagar, India during December 5–7, 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohemmed Suleman Noor Mohemmed Shaikh.

Ethics declarations

Funding

The present work is carried with the help of funding received from All India Council for Technical Education (AICTE), New Delhi, India, for the development of a metal-coated plastic tool using additive manufacturing for EDM applications under Research Promotion Scheme (Letter Number: 20/AICTE/RIFD/RPS (POLICY—II)54/2012-13).

Competing Interests

The corresponding author on behalf of all authors declares that there is no conflict of interest.

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, M.S.N.M., Ahuja, B.B. Optimization of Electroless Nickel Tungsten Composite Coating on 3D-Printed ABS Substrate for Maximum Tungsten Content. J. Inst. Eng. India Ser. C 103, 69–82 (2022). https://doi.org/10.1007/s40032-020-00630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-020-00630-2

Keywords

Navigation