Skip to main content
Log in

Modified Space Charge Waves in Magnetized Semiconductor Quantum Plasmas

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

A dispersion relation of space charge wave is derived using one dimensional quantum hydrodynamic model in semiconductor plasma subjected to d.c. electric and magneto-static fields. It is studied analytically for both classical and quantum plasma systems. Here the carrier drift due to d.c. electric field acts as source of free energy in the system and may be attributed as cause for unstable space charge mode. It is found that the quantum parameter-H and the orientation of applied magnetic field together not only play a key role in the dynamics of space charge wave but also induce four new channels of propagation. The phase speed and growth rate of all modes are found to be very sensitive to the orientation of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zavoiskii EK (1963) Collective interactions and the production of a high-temperature plasma. Sov At Energy 14:57–65

    Article  Google Scholar 

  2. Suprunenko VA, Sukhomlin EA, Tolok VT (1970) Collective interactions and plasma heating in a high current gas discharge. Plasma Phys 12:627–637

    Article  ADS  Google Scholar 

  3. Bingham R, Dawson JM, Su JJ, Bethe HA (1994) Collective interactions between neutrinos and dense plasmas. Phys Lett A 193:279–284

    Article  ADS  Google Scholar 

  4. Shukla PK, Eliasson B (2011) Colloquium: nonlinear collective interactions in quantum plasmas with degenerate electron fluids. Rev Mod Phys 83:885–906

    Article  ADS  Google Scholar 

  5. Glicksman M (1971) Plasmas in solids. In: Sietz F, Turnball D (eds) Solid state physics, vol 26. Academic Press, New York, p 275

    Google Scholar 

  6. Bowers R (1963) Plasmas of solids. Scientific American, New York, p 209

    Google Scholar 

  7. Hartnagel H (1969) Semiconductor plasma instabilities. Heinemann Educational Books Ltd., London

    Google Scholar 

  8. Steele MC, Vural B (1969) Wave interactions in solid state plasmas. Mc-Graw Hill, New York

    MATH  Google Scholar 

  9. Manfredi G (2005) How to model quantum plasmas. Fields Inst Commun 46:263–287

    MathSciNet  MATH  Google Scholar 

  10. Manfredi G, Hass F (2001) Self consistent fluid model for quantum electron gas. Phys Rev B 64:075316–075323

    Article  ADS  Google Scholar 

  11. Misra AP, Ghosh NK, Bhowmik C (2008) Solitary wave propagation in quantum electron-positron plamas. Eur Phys J D 49:373–377

    Article  ADS  Google Scholar 

  12. Roy K, Misra AP, Chatterjee P (2008) Ion acoustic shocks in quantum electron-positron-ion plasmas. Phys Plasmas 15:032310-1–032310-7

    Article  ADS  Google Scholar 

  13. Ghosh S, Khare P (2005) Acousto-electric wave instability in ion-implanted semiconductor plasma. Eurp Phys J D 35:521–526

    Article  ADS  Google Scholar 

  14. Ghosh S, Khare P (2006) Acoustic wave amplification in ion-implanted piezoelectric semiconductor. Ind J Pure Appl Phys 44:183–187

    Google Scholar 

  15. Kumar G, Tripathi VK (2007) Filamentation of a surface plasma wave over a semiconductor-free space interface. J Appl Phys 102:123301-1–123301-4

    ADS  Google Scholar 

  16. Haas F, Garcia LG, Goedert J, Manfredi G (2003) Quantum ion-acoustic waves. Phys Plasmas 10:3858–3866

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apurva Muley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Muley, A. Modified Space Charge Waves in Magnetized Semiconductor Quantum Plasmas. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 89, 397–403 (2019). https://doi.org/10.1007/s40010-018-0483-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-018-0483-9

Keywords

Navigation