Skip to main content
Log in

Effect of doping on amplitude modulation of space-charge wave in semiconductor quantum plasma

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

To describe the modulational instability of space-charge waves in an n-type compensated semiconductor plasma, a nonlinear Schrödinger equation has been derived by using quantum hydrodynamical model and standard multiple scale perturbation technique. It has been shown that compensation factor (i.e. relative proportion of donor, acceptor and intrinsic carrier concentrations) and quantum diffraction parameter play important role in generating bright and dark envelope solitons within the semiconductor. Instability growth rate is also found to depend sensitively on the compensation factor and quantum diffraction parameter. From the linear dispersion relation it has been found that inclusion of quantum parameter gives rise to two new wave modes of purely quantum origin. Further the effect of compensation factor and quantum diffraction parameter on the linear dispersion characteristics has been analyzed. It has also been found that due to parabolicity of conduction band the group velocity of space-charge wave becomes dependent on compensation factor and quantum diffraction parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D Bohm Phys. Rev. 85 166 (1952)

    Article  ADS  Google Scholar 

  2. D Bohm and D. Pines Phys. Rev. 92 609 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  3. D Pines Nucl. Energy C Plasma Phys. Accel. Thermonucl. 2 5 (1961)

    Article  MathSciNet  Google Scholar 

  4. V S Filinov, M Bonitz, P Levashov, V E Fortov, W Ebeling, M Schlanges and S W Koch J. Phys. A Math. Gen. 36 5921 (2003)

    Article  ADS  Google Scholar 

  5. G Manfredi Fields Inst. Commun. 46 263 (2005)

    Google Scholar 

  6. S L Shapiro and S A Teukolsky Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Weinheim: Wiley-VCH) (1983)

    Book  Google Scholar 

  7. S Ali, W M Moslem, P K Shukla and R Schlickeiser Phys. Plasmas 14 082307 (2007)

    Article  ADS  Google Scholar 

  8. C L Gardner SIAM J. Appl. Math. 54 409 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  9. N Crouseilles, P A Hervieux and G Manfredi Phys. Rev. B 78 155412 (2008)

    Article  ADS  Google Scholar 

  10. S A Maier Plasmonics (New York: Springer) (2007)

    Google Scholar 

  11. M F Tsai, H Lin, C Lin, S Lin, S Wang, M Lo, S Cheng, M Lee, and W Chang Phys. Rev. Lett. 101 267402 (2008)

    Article  ADS  Google Scholar 

  12. K Seeger Semiconductor Physics, 9th edn. (Berlin: Springer) (2004)

    Book  MATH  Google Scholar 

  13. G Manfredi and P A Hervieux Appl. Phys. Lett. 91 061108 (2007)

    Article  ADS  Google Scholar 

  14. F Haas, G Manfredi, P K Shukla and P A Hervieux Phys. Rev. B 80 073301 (2009)

    Article  ADS  Google Scholar 

  15. G Manfredi and F Haas Phys. Rev. B. 64 075316 (2001)

    Article  ADS  Google Scholar 

  16. N Nimje, S Dubey and S Ghosh Indian J Phys. 84 1567 (2010)

    Article  ADS  Google Scholar 

  17. N Nimje, S Dubey and S Ghosh Indian J Phys. 86 749 (2012)

    Article  ADS  Google Scholar 

  18. S Ghosh, P Thakur and S Salimullah Indian J. Pure Appl. Phys. 44 235 (2006)

    Google Scholar 

  19. C L Gardner and C Ringhofer VLSI Des. 8 143 (1998)

    Article  Google Scholar 

  20. L Wei and Y N Wang Phys. Rev. B 75 193407 (2007)

    Article  ADS  Google Scholar 

  21. A A Toropov and T V Shubina Plasmonic Effects in Metal-Semiconductors Nanostructures (Oxford: Oxford University Press) (2015)

    Book  Google Scholar 

  22. M M Murname, H C Kapteyn, M D Rosen and R W Falcone Science 251 531 (1991)

    Article  ADS  Google Scholar 

  23. B Ghosh, S Paul and S Banerjee World Acad. Sci. Eng. Technol. Int. J. Phys. Nucl. Sci. Eng. 8 954 (2014)

    Google Scholar 

  24. A Amo, J Lefrère, S Pigeon, C Adrados, C Ciuti, I Carusotto, R Houdré, E Giacobino and A Bramati Nat. Phys. 5 805 (2009)

    Article  Google Scholar 

  25. O A Egorov, D V Skryabin, A V Yulin and F Lederer Phys. Rev. Lett. 102 153904 (2009)

    Article  ADS  Google Scholar 

  26. M Hercher J. Opt. Soc. Am. 54 563 (1964)

    Google Scholar 

  27. R Y Chiao, E Garmire and C H Townes Phys. Rev. Lett. 13 479 (1964)

    Article  ADS  Google Scholar 

  28. Y Wang and X Lu Phys. Plasmas 21 022107 (2014)

    Article  ADS  Google Scholar 

  29. L F Mollenauer, R H Stolen and J P Gordon Phys. Rev. Lett. 45 1095 (1980)

    Article  ADS  Google Scholar 

  30. B A Kalinikos, N G Kovshikov and A N Slavin JETP Lett. 38 413 (1983)

    ADS  Google Scholar 

  31. B A Kalinikos, N G Kovshikov and A N Slavin Sov. Phys. JETP 67 303 (1988)

    Google Scholar 

  32. B A Kalinikos, N G Kovshikov and A N Slavin Sov. Tech. Phys. Lett. 10 392 (1984)

    Google Scholar 

  33. K Tai, A Hasegawa and A Tomita Phys. Rev. Lett. 56 135 (1986)

    Article  ADS  Google Scholar 

  34. M Wu, B A Kalinikos and C E Patton Phys. Rev. Lett. 93 157207 (2004)

    Article  ADS  Google Scholar 

  35. S Guha and P K Sen J. Appl. Phys. 50 5387 (1979)

    Article  ADS  Google Scholar 

  36. G Sharma and S Ghosh Eur. Phys. J. D 11 301 (2000)

    Article  ADS  Google Scholar 

  37. M R Amin Phys. Plasmas 22 032303 (2015)

    Article  ADS  Google Scholar 

  38. M R Amin J. Appl. Phys. 107 023307 (2010)

    Article  ADS  Google Scholar 

  39. G Couton, H Maillotte and M Chauvet J. Opt. B Quantum Semiclass. Opt. 6 S223 (2004)

    Article  ADS  Google Scholar 

  40. C N Lashmore-Davies Phys. Fluids 19 587 (1976)

    Article  ADS  Google Scholar 

  41. D R Anderson, S Datta and R L Gunshor J. Appl. Phys. 54 5608 (1983)

    Article  ADS  Google Scholar 

  42. V Grimalsky, E Gutierrez-D, A Garcia-B and S. Koshevaya Microelectron. J. 37 395 (2006)

    Article  Google Scholar 

  43. V I Berezhiani, V Skarka and R Miklaszewski Phys. Rev. B 57 6251 (1998)

    Article  ADS  Google Scholar 

  44. R C Jayasinghe, Y F Lao, A G U Perera, M Hammer, C F Cao and H Z Wu J. Phys. Condens. Matter 24 435803 (2012)

    Article  ADS  Google Scholar 

  45. B Ghosh and K P Das Plasma Phys. Control Fusion 350 969 (1985)

    Article  ADS  Google Scholar 

  46. B Ghosh and S Banerjee J. Astrophys. 2014 Art ID 785670 (2014)

  47. B Ghosh and S Banerjee J. Plasma Phys. 81 905810308 (1–10) (2015)

  48. B Ghosh and S Banerjee Afr. Rev. Phys. 10: 0031 225 (2015)

  49. B Ghosh and S Banerjee and S Chandra J. Phys. Chem. Sci. 3(2) 1–6 (2015)

    Google Scholar 

  50. B Ghosh and S Banerjee Turk. J. Phys. 40 1–11 (2016)

    Article  Google Scholar 

  51. S H Glenzer and R Redmer Rev. Mod. Phys 81 625 (2009)

    Article  ADS  Google Scholar 

  52. M C Steele and B Vural Wave Interaction in Solid State Plasmas 137 (McGraw Hill, New York) (1969)

    MATH  Google Scholar 

  53. S Ghosh and V K Agrawal Ind. J. Phys. A 59 55 (1985)

    Google Scholar 

  54. S Ghosh and V K Agrawal Phys. Stat. Sol. B 102 K107 (1980)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreyasi Banerjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Ghosh, B. Effect of doping on amplitude modulation of space-charge wave in semiconductor quantum plasma. Indian J Phys 91, 461–469 (2017). https://doi.org/10.1007/s12648-016-0939-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-016-0939-1

Keywords

PACS Nos.

Navigation