Skip to main content
Log in

On the Principle of the Exchange of Stabilities in Rotatory Triply Diffusive Convection

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

The present paper mathematically establishes that the principle of the exchange of stabilities in a rotatory triply diffusive convection is valid in the regime \( \frac{{R_{1} \sigma }}{{2\tau_{1}^{2} \pi^{4} }} + \frac{{R_{2} \sigma }}{{2\tau_{2}^{2} \pi^{4} }} + \frac{{T_{a} }}{{\pi^{4} }} \le 1, \) where R 1 and R 2 are the Rayleigh numbers for the two concentration components, τ 1 and τ 2 are the Lewis numbers for the two concentration components, T a is the Taylor number and σ is the Prandtl number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

a 2 :

Square of the wave number

\( D\, = \,\frac{\text{d}}{{{\text{d}}z}} \) :

Differentiation with respect to z

g :

Acceleration due to gravity

\( p( = p_{r} + i p_{i} ) \) :

Complex growth rate

R :

Thermal Rayleigh number

R 1 :

Concentration Rayleigh number for first concentration component

R 2 :

Concentration Rayleigh number for second concentration component

S 10 :

Concentration of the first component at the lower boundary

S 11 :

Concentration of the first component at the upper boundary

S 20 :

Concentration of the second component at the lower boundary

S 21 :

Concentration of the second component at the upper boundary

T :

Temperature

T 0 :

Temperature at the lower boundary

T 1 :

Temperature at the upper boundary

T a :

Taylor number

w :

Vertical velocity

z :

Vertical coordinate

σ :

Prandtl number

ζ :

Vertical vorticity

θ :

Temperature

ϕ 1 :

Perturbation concentration of first component

ϕ 2 :

Perturbation concentration of second component

\( \tau_{1} \left( { = \frac{{\kappa_{1} }}{\kappa }} \right) \) :

Lewis number for concentration S 1

\( \tau_{2} \left( { = \frac{{\kappa_{2} }}{\kappa }} \right) \) :

Lewis number for concentration S 2

κ:

Thermal diffusivity

κ 1 :

Mass diffusivity of S 1

κ 2 :

Mass diffusivity of S 2

*:

Complex conjugation

References

  1. Stern ME (1960) The ‘salt fountain’ and ‘thermohaline convection’. Tellus 12:172–175

    Article  ADS  Google Scholar 

  2. Veronis G (1965) On finite amplitude instability in thermohaline convection. J Mar Res 23:1–17

    Google Scholar 

  3. Nield DA (1967) The thermohaline Rayleigh–Jeffrey’s problem. J Fluid Mech 29:545–558

    Article  ADS  Google Scholar 

  4. Baines PG, Gill AE (1969) On thermohaline convection with linear gradient. J Fluid Mech 37:289–306

    Article  ADS  Google Scholar 

  5. Turner JS (1968) The behaviour of a stable salinity gradient heated from below. J Fluid Mech 33:183–200

    Article  ADS  Google Scholar 

  6. Griffiths RW (1979) The influence of a third diffusing component upon the onset of convection. J Fluid Mech 92:659–670

    Article  ADS  MATH  Google Scholar 

  7. Turner JS (1985) Multicomponent convection. Ann Rev Fluid Mech 17:11–44

    Article  ADS  Google Scholar 

  8. Pearlstein AJ, Harris RM, Terrones G (1989) The onset of convective instability in a triply diffusive fluid layer. J Fluid Mech 202:443–465

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Lopez AR, Romero LA, Pearlstein AJ (1990) Effect of rigid boundaries on the onset of convective instability in a triply diffusive fluid layer. Phys Fluids A 2(6):897–902

    Article  ADS  MATH  Google Scholar 

  10. Ryzhkov II, Shevtsova VM (2007) On thermal diffusion and convection in multicomponent mixtures with application to the thermogravitational column. Phys Fluids 19:027101

    Article  ADS  Google Scholar 

  11. Ryzhkov II, Shevtsova VM (2009) Long wave instability of a multicomponent fluid layer with the soret effect. Physics of fluids 21:014102

    Article  ADS  Google Scholar 

  12. Rionero S (2013) Global nonlinear stability for a triply diffusive convection in a porous layer. Continuum Mech Thermodyn 24:629–641

    Article  ADS  MathSciNet  Google Scholar 

  13. Rionero S (2013) Multicomponent diffusive-convective fluid motions in porous layers ultimately boundedness, absence of subcritical instabilities, and global nonlinear stability for any number of salts. Phys Fluids 25:054104

    Article  ADS  Google Scholar 

  14. Pellew A, Southwell RV (1940) On the maintained convective motion in a fluid heated from below. Proc R Soc Lond A 176:312–343

    Article  ADS  MathSciNet  Google Scholar 

  15. Banerjee MB, Gupta JR, Shandil RG, Sood SK, Banerjee B, Banerjee K (1985) On the principle of exchange of stabilities in the magnetohydrodynamic simple Benard problem. J Math Anal Appln 108(1):216–222

    Article  MATH  MathSciNet  Google Scholar 

  16. Gupta JR, Sood SK, Bhardwaj UD (1986) On the characterization of non oscillatory motions in a rotatory hydromagnetic thermohaline convection. Indian J Pure Appl Math 17(1):100–107

    MATH  MathSciNet  Google Scholar 

  17. Prakash J, Vaid K, Bala R (2013) On the characterization of nonoscillatory motions in triply diffusive convection. Communicated

  18. Gupta JR, Sood SK, Bhardwaj UD (1984) On Rayleigh–Benard convection with rotation and magnetic field. J Appl Maths Phys 35:252–256

    Article  MATH  MathSciNet  Google Scholar 

  19. Schultz MH (1973) Spline analysis. Prentice-Hall Inc., Englewood Cliffs

    MATH  Google Scholar 

  20. Banerjee MB, Shandil RG, Lal P, Kanwar V (1995) A mathematical theorem in rotatory thermohaline convection. J Math Anal Appl 189:351–361

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Prakash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prakash, J., Bala, R. & Vaid, K. On the Principle of the Exchange of Stabilities in Rotatory Triply Diffusive Convection. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 84, 433–439 (2014). https://doi.org/10.1007/s40010-014-0155-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-014-0155-3

Keywords

Navigation