Skip to main content

Advertisement

Log in

Solid dispersion of mebendazole via surfactant carrier to improve oral bioavailability and in vitro anticancer efficacy

  • Original Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to prepare a solid dispersion (SD) formulation of MBZ to improve dissolution and oral bioavailability.

Methods

A SD formulation of mebendazole (MBZ) was prepared using sodium dodecyl sulfate (SDS) as a carrier via lyophilization method. Powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used to confirm the structural properties and morphology of the MBZ-SD formulation. Dissolution study was conducted in an acidic medium (0.1 M HCl), and pharmacokinetic study was conducted in rats. In addition, the in vitro anticancer effects of MBZ-SD were also investigated in various cancer cell lines.

Results

From the results of PXRD, DSC, FTIR, and SEM assessments, there was an interaction between MBZ and SDS in the MBZ-SD. MBZ-SD significantly improved the aqueous solubility of MBZ (approximately 15,982-fold) and the dissolution of MBZ at 5 min (1.5-fold) as compared to that of pure MBZ. The area under the curve (AUC0–24) and the maximum concentration (Cmax) of the MBZ-SD formulation showed a 3.56- and 3.30-fold increased values compared to pure MBZ. The anticancer effects of MBZ with IC50 value were in the order of A549 > MDA-MB-231 > HepG2 > MCF-7 > NCI-H1299 > HeLa. At safe concentrations in normal cells, the MBZ-SD formulation exhibited the superior anticancer efficacy in HeLa cells.

Conclusion

The obtained results in the present study suggests that SD is a good candidate for improving the bioavailability and anticancer effects of MBZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Japairai KAS, Alkhalidi HM, Mahmood A, Almurisi SH, Doolaanea AA, Al-Sindi TA, Chatterjee B, (2020) Lyophilized amorphous dispersion of telmisartan in a combined carrier–alkalizer system: formulation development and in vivo study. ACS Omega 5:32466–32480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allan RJ, Watson TR (1982) Identification of biliary metabolites of mebendazole in the rat. Eur J Drug Metab Pharmacokinet 7:131–136

    Article  CAS  PubMed  Google Scholar 

  • Bai R-Y, Staedtke V, Wanjiku T, Rudek MA, Joshi A, Gallia GL, Riggins GJ (2015) Brain penetration and efficacy of different mebendazole polymorphs in a mouse brain tumor model. Clin Cancer Res 21:3462–3470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braithwaite PA, Roberts MS, Allan RJ, Watson TR (1982) Clinical pharmacokinetics of high dose mebendazole in patients treated for cystic hydatid disease. Eur J Clin Pharmacol 22:161–169

    Article  CAS  PubMed  Google Scholar 

  • Calvo NL, Kaufman TS, Maggio RM (2016) Mebendazole crystal forms in tablet formulations. An ATR-FTIR/chemometrics approach to polymorph assignment. J Pharm Biomed Anal 122:157–165

    Article  CAS  PubMed  Google Scholar 

  • Camí GE, Brusau EV, Narda GE, Maggio RM (2020) Dual approach for concomitant monitoring of dissolution and transformation at solid-state. Mebendazole salts case study. J Drug Deliv Sci Technol 55:101344

    Article  Google Scholar 

  • Chaudhary S, Garg T, Rath G, Murthy RR, Goyal AK (2015) Enhancing the bioavailability of mebendazole by integrating the principles solid dispersion and nanocrystal techniques, for safe and effective management of human echinococcosis. Artif Cells Nanomed Biotechnol. https://doi.org/10.3109/21691401.2014.1000493

    Article  PubMed  Google Scholar 

  • Chen J-M, Wang Z-Z, Wu C-B, Li S, Lu T-B (2012) Crystal engineering approach to improve the solubility of mebendazole. CrystEngComm 14:6221

    Article  CAS  Google Scholar 

  • Chiba Y, Kohri N, Iseki K, Miyazaki K (1991) Improvement of dissolution and bioavailability for mebendazole, an agent for human echinococcosis, by preparing solid dispersion with polyethylene glycol. Chem Pharm Bull 39:2158–2160

    Article  CAS  Google Scholar 

  • Dalvi PB, Gerange AB, Ingale PR (2015) Solid dispersion: strategy to enhance solubility. J Drug Deliv Ther. https://doi.org/10.22270/jddt.v5i2.1060

    Article  Google Scholar 

  • Daniel-Mwambete K, Torrado S, Cuesta-Bandera C, Ponce-Gordo F, Torrado J (2004) The effect of solubilization on the oral bioavailability of three benzimidazole carbamate drugs. Int J Pharm 272:29–36

    Article  CAS  PubMed  Google Scholar 

  • Das A, Nayak AK, Mohanty B, Panda S (2011) Solubility and dissolution enhancement of etoricoxib by solid dispersion technique using sugar carriers. ISRN Pharm 2011:819765

    PubMed  PubMed Central  Google Scholar 

  • Dawson M, Allan R, Watson T (1982) The pharmacokinetics and bioavailability of mebendazole in man: a pilot study using [3H]-mebendazole. Br J Clin Pharmacol 14:453–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayan A (2003) Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop 86:141–159

    Article  CAS  PubMed  Google Scholar 

  • de la Torrado-Santiago PM, García-Rodriguez JJ, Torrado G, Torrado S, Torrado-Santiago A, Bolás-Fernández F (2014) Enhanced bioavailability and anthelmintic efficacy of mebendazole in redispersible microparticles with low-substituted hydroxypropylcellulose. Drug Des Devel 8:1467–1479

    Google Scholar 

  • Doktorovova S, Souto EB, Silva AM (2014) Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers–a systematic review of in vitro data. Eur J Pharm Biopharm 87:1–18

    Article  CAS  PubMed  Google Scholar 

  • Doudican N, Rodriguez A, Osman I, Orlow SJ (2008) Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol Cancer Res 6:1308–1315

    Article  CAS  PubMed  Google Scholar 

  • Fitriani L, Haqi A, Zaini E (2016) Preparation and characterization of solid dispersion freeze-dried efavirenz – polyvinylpyrrolidone K-30. J Adv Pharm Technol Res 7:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flohr C, Tuyen LN, Lewis S, Minh TT, Campbell J, Britton J, Wiiliams H, Hien TT, Farrar J, Quinnell RJ (2007) Low efficacy of mebendazole against hookworm in Vietnam: two randomized controlled trials. Am J Trop Med Hyg 76:732–736

    Article  CAS  PubMed  Google Scholar 

  • Garbuio AQP, Hanashiro T, Markman BEO, Fonseca FLA, Perazzo FF, Rosa PC (2014) Evaluation and study of mebendazole polymorphs present in raw materials and tablets available in the Brazilian pharmaceutical market. J Appl Pharm Sci 4:001–007

    Google Scholar 

  • García-Rodriguez JJ, de la Torre-Iglesias PM, Vegas-Sánchez MC, Torrado-Durán S, Bolás-Fernández F, Torrado-Santiago S (2011) Changed crystallinity of mebendazole solid dispersion: improved anthelmintic activity. Int J Pharm 403:23–28

    Article  PubMed  Google Scholar 

  • Godfrey KR, Arundel PA, Dong Z, Bryant R (2011) Modelling the double peak phenomenon in pharmacokinetics. Comput Methods Programs Biomed 104:62–69

    Article  PubMed  Google Scholar 

  • Hafizah MAE, Riyadi AF, Manaf A, Andreas, (2019) Particle size reduction of polyaniline assisted by anionic emulsifier of sodium dodecyl sulphate (SDS) through emulsion polymerization. IOP Conf Ser Mater Sci Eng 515:012080

    Article  CAS  Google Scholar 

  • Holanda BBC, Alarcon RT, Guerra RB, Rinaldo D, Spazzini FCR, Castro RAE, Bannach G (2018) Investigation of thermal degradation products of mebendazole by thermal and spectroscopic analysis. J Anal Appl Pyrolysis 135:76–84

    Article  CAS  Google Scholar 

  • Jongsuksuntigul P, Jeradit C, Pornpattanakul S, Charanasri U (1993) A comparative study on the efficacy of albendazole and mebendazole in the treatment of ascariasis, hookworm infection and trichuriasis. Southeast Asian J Trop Med Public Health 24:724–729

    CAS  PubMed  Google Scholar 

  • Kachrimanis K, Rontogianni M, Malamataris S (2010) Simultaneous quantitative analysis of mebendazole polymorphs A-C in powder mixtures by DRIFTS spectroscopy and ANN modeling. J Pharm Biomed Anal 51:512–520

    Article  CAS  PubMed  Google Scholar 

  • Khan HJ, Rohondia SO, Othman Ahmed ZS, Zalavadiya N, Dou QP (2020) Increasing opportunities of drug repurposing for treating breast cancer by the integration of molecular, histological, and systemic approaches. Drug repurposing in cancer therapy. Elsevier, Amsterdam, pp 121–172

    Chapter  Google Scholar 

  • Kim NA, Oh HK, Lee JC, Choi YH, Jeong SH (2021) Comparison of solubility enhancement by solid dispersion and micronized butein and its correlation with in vivo study. J Pharm Investig 51:53–60

    Article  CAS  Google Scholar 

  • Krishnaiah YS, Veer Raju P, Dinesh Kumar B, Satyanarayana V, Karthikeyan RS, Bhaskar P (2003) Pharmacokinetic evaluation of guar gum-based colon-targeted drug delivery systems of mebendazole in healthy volunteers. J Control Release 88:95–103

    Article  CAS  PubMed  Google Scholar 

  • Kwon J, Giri BR, Song ES, Bae J, Lee J, Kim DW (2019) Spray-dried amorphous solid dispersions of atorvastatin calcium for improved supersaturation and oral bioavailability. Pharmaceutics 11:461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lea T (2015) Caco-2 Cell Line. The impact of food bioactives on health. Springer International Publishing, Cham, pp 103–111

    Google Scholar 

  • Lee YJ, Ahn YJ, Lee G-J (2022) Cytotoxicity evaluation of sodium lauryl sulfate in a paper-based 3D cell culture system. Anal Methods 14:1755–1764

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Feng X, Williams RO, Zhang F (2018) Characterization of amorphous solid dispersions. J Pharm Investig 48:19–41

    Article  Google Scholar 

  • Lun H, Ouyang J, Yang H (2014) Enhancing dispersion of halloysite nanotubes via chemical modification. Phys Chem Miner 41:281–288

    Article  CAS  Google Scholar 

  • Luu TD, Lee B-J, Tran PHL, Tran TTD (2019) Modified sprouted rice for modulation of curcumin crystallinity and dissolution enhancement by solid dispersion. J Pharm Investig 49:127–134

    Article  CAS  Google Scholar 

  • Maki J, Yanagisawa T (1986) Studies on anthelmintic effects of flubendazole and mebendazole on the rat lungworm Angiostrongylus cantonensis in mice and rats. J Parasitol 72:512–516

    Article  CAS  PubMed  Google Scholar 

  • Martarelli D, Pompei P, Baldi C, Mazzoni G (2008) Mebendazole inhibits growth of human adrenocortical carcinoma cell lines implanted in nude mice. Cancer Chemother Pharmacol 61:809–817

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay T, Sasaki J, Ramesh R, Roth JA (2002) Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. Clin Cancer Res 8:2963–2969

    CAS  PubMed  Google Scholar 

  • Münst GJ, Karlaganis G, Bircher J (1980) Plasma concentrations of mebendazole during treatment of echinococcosis. Eur J Clin Pharmacol 17:375–378

    Article  PubMed  Google Scholar 

  • Nygren P, Fryknäs M, Ågerup B, Larsson R (2013) Repositioning of the anthelmintic drug mebendazole for the treatment for colon cancer. J Cancer Res Clin Oncol 139:2133–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okunlola A, Ghomorai T (2018) Development of ibuprofen microspheres using acetylated plantain starches as polymer for sustained release. J Pharm Investig 48:551–564

    Article  CAS  Google Scholar 

  • Okusanya O, Forrest A, DiFrancesco R, Bilic S, Rosenkranz S, Para MF, Adams E, Yarasheski KE, Reichman RC, Morse GD, ACTG 5043 Protocol Team (2007) Compartmental pharmacokinetic analysis of oral amprenavir with secondary peaks. Antimicrob Agents Chemother 51:1822–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parakh DR, Patil MP, Dashputre NL, Kshirsagar SJ (2016) Development of self-microemulsifying drug delivery system of mebendazole by spray drying technology: characterization, in vitro and in vivo evaluation. Dry Technol 34:1023–1042

    Article  CAS  Google Scholar 

  • Pinto LC et al (2015) The anthelmintic drug mebendazole inhibits growth, migration and invasion in gastric cancer cell model. Toxicol Vitr 29:2038–2044

    Article  CAS  Google Scholar 

  • Reddy ST, Sivaramakrishna D, Swamy MJ (2017) Physicochemical characterization of lauryl glycinate-dodecyl sulfate equimolar complex: a base-triggerable catanionic liposomal system. Coll Surf A 516:139–146

    Article  CAS  Google Scholar 

  • Rowe RC, Sheskey PJ, Quinn ME (2009) Handbook of pharmaceutical excipients, 6th edn. Pharmaceutical Press & American Pharmacists Association, London

    Google Scholar 

  • Rusanov AL, Luzgina NG, Lisitsa AV (2017) Sodium dodecyl sulfate cytotoxicity towards HaCaT keratinocytes: comparative analysis of methods for evaluation of cell viability. Bull Exp Biol Med 163:284–288

    Article  CAS  PubMed  Google Scholar 

  • Saad P, Flach CR, Walters RM, Mendelsohn R (2012) Infrared spectroscopic studies of sodium dodecyl sulphate permeation and interaction with stratum corneum lipids in skin. Int J Cosmet Sci 34:36–43

    Article  CAS  PubMed  Google Scholar 

  • Sandulovici R, Aboul-Enein HT, Voicu V, Ghafil AF, Mati E, Anuta V, Sarbu I, Mircioiu I (2021) Determination and modeling of in vitro release kinetics of mebendazole in simulated intestinal fluid from solid dispersion formulations as infinite reservoir. Acta Pol Pharm 77:849–861

    Google Scholar 

  • Sasaki J, Ramesh R, Chada S, Gomyo Y, Roth JA, Mukhopadhyay T (2002) The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol Cancer Ther 1:1201–1209

    CAS  PubMed  Google Scholar 

  • Shashaani H, Faramaezpour M, Hassanpour M, Namdar N, Alikhani A, Abdolahad M (2016) Silicon nanowire based biosensing platform for electrochemical sensing of Mebendazole drug activity on breast cancer cells. Biosens Bioelectron 85:363–370

    Article  CAS  PubMed  Google Scholar 

  • Soukhathammavong PA, Sayasone S, Phongluxa K, Xayaseng V, Utzinger J, Vounatsou P, Hatz C, Akkhavong K, Keiser J, Odermatt P (2012) Low efficacy of single-dose albendazole and mebendazole against hookworm and effect on concomitant helminth infection in Lao PDR. PLoS Negl Trop Dis 6:e1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumimoto Y, Oakawa S, Inoue T, Masuda K, Maruyama M, Higaki K (2022) Extensive improvement of oral bioavailability of mebendazole, a brick dust, by polymer-containing SNEDDS preparation: disruption of high crystallinity by utilizing its counter ion. Eur J Pharm Biopharm 172:213–227

    Article  CAS  PubMed  Google Scholar 

  • Thakur RK, Patel SP (2022) Mebendazole. StatPearls Publishing, Treasure Island

    Google Scholar 

  • Vasconcelos T, Sarmento B, Costa P (2007) Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 12:1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Vo CL-N, Park C, Lee B-J (2013) Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm 85:799–813

    Article  CAS  PubMed  Google Scholar 

  • Welch J, Wallace J, Lansley AB, Roper C (2021) Evaluation of the toxicity of sodium dodecyl sulphate (SDS) in the MucilAir™ human airway model in vitro. Regul Toxicol Pharmacol 125:105022

    Article  CAS  PubMed  Google Scholar 

  • Williamson T, Bai R-Y, Staedtke V, Huso D, Riggins GJ (2016) Mebendazole and a non-steroidal anti-inflammatory combine to reduce tumor initiation in a colon cancer preclinical model. Oncotarget 7:68571–68584

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin OQ, Tomlinson B, Chow AH, Chow MS (2003) A modified two-portion absorption model to describe double-peak absorption profiles of ranitidine. Clin Pharmacokinet 42:179–192

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Bratver MB, Yazal T, Dong K, Nguyen A, Yu G, Dao A, Dratver MB, Duhachek-Muggy S, Bhat K, Alli C, Pajonk F, Vlashi E (2019) Mebendazole potentiates radiation therapy in triple-negative breast cancer. Int J Radiat Oncol 103:195–207

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (NRF-2021R1A2C1011176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Sook Park.

Ethics declarations

Conflict of interest

All authors (T.N. Nguyen, P. Tran, Y.E. Choi, and J.S. Park) declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 83 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.N., Tran, P., Choi, YE. et al. Solid dispersion of mebendazole via surfactant carrier to improve oral bioavailability and in vitro anticancer efficacy. J. Pharm. Investig. 53, 443–455 (2023). https://doi.org/10.1007/s40005-023-00616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-023-00616-z

Keywords

Navigation