Skip to main content

Advertisement

Log in

Oral Bioavailability Enhancement of Docetaxel by Preparation of Freeze-Dried Ternary Solid Dispersion Using Hydrophilic Polymer and Surfactant

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The poor solubility and permeability of docetaxel have limited its oral delivery. The current study was aimed at formulating the ternary solid dispersion of docetaxel for treatment of breast cancer and evaluating its oral bioavailability.

Methods

The solid dispersions of docetaxel were prepared in drug:polymer:surfactant ratio of 1:1:0.01 by using different hydrophilic polymers namely, PVP K-30, HPMC E5, PEG 4000, PEG 10000, Eudragit EPO and Eudragit L100, with the surfactant, sodium lauryl sulphate by the technique of freeze-drying. The best polymer was then selected based on drug release data and its ratio with the drug, and surfactant was optimized.

Results

Among the screened polymers, Eudragit L100 has given the best results in terms of aqueous solubility and dissolution. The drug:polymer:surfactant ratio for optimized dispersion was 1:3:0.01. The amorphous state of the dispersion was confirmed by solid-state analytical techniques. Enhanced drug release along with enhanced in vitro anticancer activity in the MCF-7 cell line was seen in formulated amorphous dispersion. The results of in vivo pharmacokinetic studies also revealed similar findings where the maximum plasma drug concentration (Cmax), area under curve (AUC) and absorption rate constant (Ka) of dispersion were increased by 5.14, 6.46 and 1.91 times, respectively, as compared to pure drug.

Conclusion

The optimized dispersion formulation DEL1003 has shown 2.68 times greater drug release due to its amorphous nature, reduced particle size to 137.7 nm and raised aqueous solubility to 274.38 μg/ml. All these beneficial pharmaceutical factors resulted in the significant enhancement in the oral bioavailability of docetaxel. Altogether, the formulated ternary solid dispersion prepared by freeze-drying technology was found to be a promising approach for enhancing the oral delivery of docetaxel against breast neoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Kashyap D, Pal D, Sharma R, Garg V, Goel N, Koundal D, Zaguia A, Koundal S, Belay A. Global increase in breast cancer incidence: risk factors and preventive measures. BioMed Res Int. 2022. https://doi.org/10.1155/2022/9605439.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Oyediran KO, Ilomuanya MO, Azubuike CP, Nurudeen L. A multiscale approach to targeted docetaxel formulations: combination therapy, nanotechnology, electrospinning and 3D printing—a review. Bull Natl Res Cent. 2022;46:167. https://doi.org/10.1186/s42269-022-00854-5.

  3. Lim SM, Pang ZW, Tan HY, Shaikh M, Adinarayana G, Garg S. Enhancement of docetaxel solubility using binary and ternary solid dispersion systems. Drug Dev Ind Pharm. 2015;41(11):1847–55. https://doi.org/10.3109/03639045.2015.1014818.

    Article  PubMed  CAS  Google Scholar 

  4. Alqahtani MS, Kazi M, Alsenaidy MA, Ahmad MZ. Advances in oral drug delivery. Front Pharmacol. 2021;12:618411. https://doi.org/10.3389/fphar.2021.618411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Muhammad FS, Rehman M, Sarwar HS, Naveed S, Salman O, Bukhari NI, Hussain I, Webster TJ, Shahnaz G. Advancements in the oral delivery of docetaxel: challenges, current state-of-the-art and future trends. Int J Nanomed. 2018;13:3145–61. https://doi.org/10.2147/IJN.S164518.

    Article  Google Scholar 

  6. Alshamrani M, Ayon NJ, Alsalhi A, Akinjole O. Self-assembled nanomicellar formulation of docetaxel as a potential breast cancer chemotherapeutic system. Life. 2022;12:485. https://doi.org/10.3390/life12040485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Campani V, Salaroglio IC, Nele V, Kopecka J, Bernkop-Schnürch A, Riganti C, De Ros G. Targeted self-emulsifying drug delivery systems to restore docetaxel sensitivity in resistant tumors. Pharmaceutics. 2022;14(2):292. https://doi.org/10.3390/pharmaceutics14020292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Vakili-Ghartavol R, Rezayat SM, Faridi-Majidi R, Sadri K, Jaafari MR. Optimization of docetaxel loading conditions in liposomes: proposing potential products for metastatic breast carcinoma chemotherapy. Sci Rep. 2020;10:5569. https://doi.org/10.1038/s41598-020-62501-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zawilska P, Machowska M, Wisniewski K, Grynkiewicz G, Rafal, Hrynyk, Rzepecki R, Gubernator J. Novel pegylated liposomal formulation of docetaxel with 3-n-pentadecylphenol derivative for cancer therapy. Eur J Pharm Sci. 2021;163:105838. https://doi.org/10.1016/j.ejps.2021.105838.

  10. Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11:132. https://doi.org/10.3390/pharmaceutics11030132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sridhar I, Doshi A, Joshi B, Wankhede V, Doshi J. Solid dispersions: an approach to enhance solubility of poorly water soluble drug. J Sci Innov Res. 2013;2(3):685–94.

    Google Scholar 

  12. Borde S, Paul SK, Chauhan H. Ternary solid dispersions: classification and formulation considerations. Drug Dev Ind Pharm. 2021;47(7):1011–28. https://doi.org/10.1080/03639045.2021.1908342.

    Article  PubMed  CAS  Google Scholar 

  13. Song C, Yoon I, Kim D. Poloxamer-based solid dispersions for oral delivery of docetaxel: differential effects of F68 and P85 on oral docetaxel bioavailability. Int J Pharm. 2016;507:102–8. https://doi.org/10.1016/j.ijpharm.2016.05.002.

    Article  PubMed  CAS  Google Scholar 

  14. Giri BR, Leea J, Limb DY, Kim DW. Docetaxel/dimethyl-β-cyclodextrin inclusion complexes: preparation, in vitro evaluation and physicochemical characterization. Drug Develop Indus Pharm. 2021;47(2):319–28. https://doi.org/10.1080/03639045.2021.1879840.

    Article  CAS  Google Scholar 

  15. Yadav DK, Pawar H, Wankhade S, Suresh S. Development of novel docetaxel phospholipid nanoparticles for intravenous administration: quality by design approach. AAPS PharmSciTech. 2015;16(4):855–64. https://doi.org/10.1208/s12249-014-0274-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Jain S, Desai MR, Nallamothu B, Kuche K, Chaudhari D, Katiyar SS. Partial inclusion complex assisted crosslinked β-cyclodextrin nanoparticles for improving therapeutic potential of docetaxel against breast cancer. Drug Deliv Transl Res. 2021;12(3):562–76. https://doi.org/10.1007/s13346-021-00956-z.

    Article  PubMed  CAS  Google Scholar 

  17. Ding Z, Wang L, Xing Y, Zhao Y, Wang Z, Han Y. Enhanced oral bioavailability of celecoxib nanocrystalline solid dispersion based on wet media milling technique: formulation, optimization and in vitro/in vivo evaluation. Pharmaceutics. 2019;11(7):328. https://doi.org/10.3390/pharmaceutics11070328.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Swami R, Kumar Y, Chaudhari D, Katiyar SS, Kuche K, Katare PB, Banerjee SK. Jain S. pH sensitive liposomes assisted specific and improved breast cancer therapy using co-delivery of SIRT1 shRNA and docetaxel. Mat Sci Eng C. 2021;120:111664. https://doi.org/10.1016/j.msec.2020.111664.

    Article  CAS  Google Scholar 

  19. Valicherla GR, Dave KM, Syed AA, Riyazuddin M, Gupta AP, Singh A, Wahajuddin, Mitra K, Datta D, Gayen JR. Formulation optimization of Docetaxel loaded self-emulsifying drug delivery system to enhance bioavailability and anti-tumor activity. Sci Rep. 2016;6:26895. https://doi.org/10.1038/srep26895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kharkar PB, Talkar SS, Patravale VB. A rapid and sensitive bio-analytical RP-HPLC method for detection of docetaxel: development and validation. Ind J Pharm Edu Res. 2017;51(4s):s729–34. https://doi.org/10.5530/ijper.51.4s.105.

    Article  CAS  Google Scholar 

  21. Alwossabi AM, Elamin ES, Ahmed EM, Abdelrahman M. Solubility enhancement of some poorly soluble drugs by solid dispersion using Ziziphus spina-christi gum polymer. Saudi Pharm J. 2022;30:711–25. https://doi.org/10.1016/j.jsps.2022.04.002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Dave RH, Patel HH, Donahue E, Patel AD. To evaluate the change in release from solid dispersion using sodium lauryl sulfate and model drug sulfathiazole. Drug Dev Ind Pharm. 2013;39(10):1562–72. https://doi.org/10.3109/03639045.2012.725731.

    Article  PubMed  CAS  Google Scholar 

  23. Li X, Wang D, Zhang J, Pan W. Preparation and pharmacokinetics of docetaxel based on nanostructured lipid carriers. J Pharm Pharmacol. 2009;61:1485–92. https://doi.org/10.1211/jpp/61.11.0007.

    Article  PubMed  CAS  Google Scholar 

  24. Dhondale MR, Thakor P, Agrawal AK, et al. Co-Crystallization approach to enhance the stability of moisture-sensitive drugs. Pharmaceutics. 2023;15:189. https://doi.org/10.3390/pharmaceutics15010189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Leyva-Porras C, Cruz-Alcantar P, Espinosa-Solis V, Martinez-Guerra E, Pinon-Balderrama CI, Martinez IC, Saavedra-Leos MZ. Application of differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) in food and drug industries. Polymers. 2019;12:5. https://doi.org/10.3390/polym12010005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Schwartzberg LS, Navari RM. Safety of polysorbate 80 in the oncology setting. Adv Ther. 2018;35:754–67. https://doi.org/10.1007/s12325-018-0707-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Nair AR, Lakshman YD, Anand VS, Sree KS, Bhat K, Dengale SJ. Overview of extensively employed polymeric carriers in solid dispersion technology. AAPS PharmSciTech. 2020;21:309. https://doi.org/10.1208/s12249-020-01849-z.

    Article  PubMed  CAS  Google Scholar 

  28. Patra CN, Priya R, Swain S, Kumar Jena G, Panigrahi KC, Ghose D. Pharmaceutical significance of Eudragit: a review. Future J Pharm sci. 2017. https://doi.org/10.1016/j.fjps.2017.02.001.

    Article  Google Scholar 

  29. Chavan RB, Lodagekar A, Shastri NR. Determination of precipitation inhibitory potential of polymers from amorphous solid dispersions. Drug Dev Ind Pharm. 2018;44(12):1933–41. https://doi.org/10.1080/03639045.2018.1503295.

    Article  PubMed  CAS  Google Scholar 

  30. Xie T, Taylor LS. Improved release of celecoxib from high drug loading amorphous solid dispersions formulated with polyacrylic acid and cellulose derivatives. Mol Pharm. 2016;13(3):873–84. https://doi.org/10.1021/acs.molpharmaceut.5b00798.

    Article  PubMed  CAS  Google Scholar 

  31. Vakili-Ghartavol R, Rezayat SM, Faridi-Majidi R, Sadri K, Jaafari MR. Optimization of docetaxel loading conditions in liposomes: proposing potential products for metastatic breast carcinoma chemotherapy. Sci Reports. 2020;10:5569. https://doi.org/10.1038/s41598-020-62501-1.

    Article  CAS  Google Scholar 

  32. Inam S, Irfan M, Lali N, Syed KN, Asghar S, Khan IU, Khan S, Iqbal MS, Zaheer I, Khames A, Abou-Taleb HA, Abourehab MA. Development and characterization of Eudragit® EPO-based solid dispersion of rosuvastatin calcium to foresee the impact on solubility, dissolution and antihyperlipidemic activity. Pharmaceuticals. 2022;15:492. https://doi.org/10.3390/ph15040492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Salmani JM, Lv H, Asghar S, Zhou J. Amorphous solid dispersion with increased gastric solubility in tandem with oral disintegrating tablets: a successful approach to improve the bioavailability of atorvastatin. Pharm Dev Technol. 2015;20:465–72. https://doi.org/10.3109/10837450.2014.882938.

    Article  PubMed  CAS  Google Scholar 

  34. Khachane P, Date AA, Nagarsenker MS. Eudragit EPO nanoparticles: application in improving therapeutic efficacy and reducing ulcerogenicity of meloxicam on oral administration. J Biomed Nanotechnol. 2011;7:590–7. https://doi.org/10.1166/jbn.2011.1322.

    Article  PubMed  CAS  Google Scholar 

  35. Baghel S, Cathcart H, O’Reilly NJ. Understanding the generation and maintenance of supersaturation during the dissolution of amorphous solid dispersions using modulated DSC and 1 H NMR. Int J Pharm. 2018;536(1):414–25. https://doi.org/10.1016/j.ijpharm.2017.11.056.

    Article  PubMed  CAS  Google Scholar 

  36. Sawickia E, Beijnena JH, Schellensb JHM, Nuijena B. Pharmaceutical development of an oral tablet formulation containing a spray dried amorphous solid dispersion of docetaxel or paclitaxel. Int J Pharm. 2016;511(2):765–73. https://doi.org/10.1016/j.ijpharm.2016.07.068.

    Article  CAS  Google Scholar 

  37. Liu H, Tu L, Zhou Y, et al. Improved bioavailability and antitumor effect of docetaxel by TPGS modified proniosomes: in vitro and in vivo evaluations. Sci Rep. 2017;7:1–11. https://doi.org/10.1038/srep43372.

    Article  Google Scholar 

  38. Wang Y, Chen L, Tan L, et al. PEG–PCL based micelle hydrogels as oral docetaxel delivery systems for breast cancer therapy. Biomaterials. 2014;35(25):6972–85. https://doi.org/10.1016/j.biomaterials.2014.04.099.

    Article  PubMed  CAS  Google Scholar 

  39. Shapira A, Assaraf YG, Epstein D, Livney YD. Beta-casein nanoparticles as an oral delivery system for chemotherapeutic drugs: impact of drug structure and properties on co-assembly. Pharm Res. 2010;27(10):2175–86. https://doi.org/10.1007/s11095-010-0222-7.

    Article  PubMed  CAS  Google Scholar 

  40. Guan Q, Sun D, Zhang G, et al. Docetaxel-loaded self-assembly stearic acid-modified Bletilla striata polysaccharide micelles and their anticancer effect: preparation, characterization, cellular uptake and in vitro evaluation. Molecules. 2016;21(12):1641. https://doi.org/10.3390/molecules21121641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Grabowski N, Hillaireau H, Vergnaud J, et al. Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. Int J Pharm. 2015;482(1):75–83. https://doi.org/10.1016/j.ijpharm.2014.11.042.

    Article  PubMed  CAS  Google Scholar 

  42. Yin Y-M, Cui F-D, Mu C-F, et al. Docetaxel microemulsion for enhanced oral bioavailability: preparation and in vitro and in vivo evaluation. J Control Release. 2009;140(2):86–94. https://doi.org/10.1016/j.jconrel.2009.08.015.

    Article  PubMed  CAS  Google Scholar 

  43. Verma P, Meher JG, Asthana S, Pawar VK, Chaurasia M, Chourasia MK. Perspectives of nanoemulsion assisted oral delivery of docetaxel for improved chemotherapy of cancer. Drug Deliv. 2016;23(2):479–88. https://doi.org/10.3109/10717544.2014.920430.

    Article  PubMed  CAS  Google Scholar 

  44. Pandey G, Mittapelly N, Valicherla GR, et al. P-gp modulatory acetyl-11-keto-β-boswellic acid based nanoemulsified carrier system for augmented oral chemotherapy of docetaxel. Colloids Surf B Biointerfaces. 2017;155:276–86. https://doi.org/10.1016/j.colsurfb.2017.04.028.

    Article  PubMed  CAS  Google Scholar 

  45. Moes J, Koolen S, Huitema A, Schellens J, Beijnen J, Nuijen B. Pharmaceutical development and preliminary clinical testing of an oral solid dispersion formulation of docetaxel (ModraDoc001). Int J Pharm. 2011;420(2):244–50. https://doi.org/10.1016/j.ijpharm.2011.08.041.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to Mr. Dhiraj Khattar and Dr. Sandip Zode, Fresenius Kabi Oncology Ltd., Gurgaon, India, for providing a free gift sample of valuable docetaxel. We also thank Dr. S.S. Chitlange, Dr. Shubhangi Shekade, DYPIPSR, Pune, India, for allowing us to use lyophilizer for freeze-drying of our formulations. The authors also express their sincere thanks to Dr. Sandip Patil, Director, Biocyte Laboratories, for supporting our in vitro anticancer activity studies and in vivo bioavailability studies in this research. We would also like to thank the professionals at Savitribai Phule Pune University, Pune ,for providing excellent facilities for the examination of solid-state samples. The authors would like to thank Dr. Amit Kasabe, Director of the Aster Analytics Research Institute in Pune, for helping us with the data interpretation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Mane P. T., Wakte P. S.; research methodology: Mane P. T., Wakure B. S.; formal analysis: Mane P. T., Wakure B. S.; resources: Mane P. T., Wakure B. S.; Wakte P. S.; writing-original draft: Mane P. T.; writing—review and editing: Mane P. T., Wakure B. S., Wakte P. S.

Corresponding author

Correspondence to Preeti Tanaji Mane.

Ethics declarations

Ethics Approval and Consent to Participate

In accordance with the recommendations of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), India, the Institutional Animal Ethics Committee (IAEC) has the approval of all animal experimental procedures (CPCSEA registration number: 1988/PO/Re/S/17/CPCSEA). The IAEC of Gourishankar Institute of Pharmaceutical Education & Research, Limb, Satara, Maharashtra, India, has the approval of all animal experimental procedures for this project number GIPER/IAEC/22/07. The authors state that for all the animal experimental studies, they have gotten the necessary institutional review board approval or have complied with the Declaration of Helsinki’s guiding principles.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mane, P.T., Wakure, B.S. & Wakte, P.S. Oral Bioavailability Enhancement of Docetaxel by Preparation of Freeze-Dried Ternary Solid Dispersion Using Hydrophilic Polymer and Surfactant. J Pharm Innov 18, 1669–1684 (2023). https://doi.org/10.1007/s12247-023-09746-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09746-1

Keywords

Navigation