Skip to main content
Log in

Tissue Engineering of the Intervertebral Disc’s Annulus Fibrosus: A Scaffold-Based Review Study

  • Review Article
  • Published:
Tissue Engineering and Regenerative Medicine Aims and scope

Abstract

Tissue engineering as a high technology solution for treating disc’s problem has been the focus of some researches recently; however, the upcoming successful results in this area depends on understanding the complexities of biology and engineering interface. Whereas the major responsibility of the nucleus pulposus is to provide a sustainable hydrated environment within the disc, the function of the annulus fibrosus (AF) is more mechanical, facilitating joint mobility and preventing radial bulging by confining of the central part, which makes the AF reconstruction important. Although the body of knowledge regarding the AF tissue engineering has grown rapidly, the opportunities to improve current understanding of how artificial scaffolds are able to mimic the AF concentric structure—including inter-lamellar matrix and cross-bridges—addressed unresolved research questions. The aim of this literature review was to collect and discuss, from the international scientific literature, information about tissue engineering of the AF based on scaffold fabrication and material properties, useful for developing new strategies in disc tissue engineering. The key parameter of this research was understanding if role of cross-bridges and inter-lamellar matrix has been considered on tissue engineering of the AF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Choi YS. Pathophysiology of degenerative disc disease. Asian Spine J. 2009;3:39–44.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guerin HA, Elliott DM. Degeneration affects the fiber reorientation of human annulus fibrosus under tensile load. J Biomech. 2006;39:1410–8.

    Article  PubMed  Google Scholar 

  3. Minogue BM, Richardson SM, Zeef LA, Freemont AJ, Hoyland JA. Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes. Arthritis Res Ther. 2010;12:R22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mwale F, Ciobanu I, Giannitsios D, Roughley P, Steffen T, Antoniou J. Effect of oxygen levels on proteoglycan synthesis by intervertebral disc cells. Spine (Phila Pa 1976). 2011;36:E131–8.

    Article  Google Scholar 

  5. Sivan SS, Hayes AJ, Wachtel E, et al. Biochemical composition and turnover of the extracellular matrix of the normal and degenerate intervertebral disc. Eur Spine J. 2014;23:S344–53.

    Article  PubMed  Google Scholar 

  6. Zhu Q, Gao X, Gu W. Temporal changes of mechanical signals and extracellular composition in human intervertebral disc during degenerative progression. J Biomech. 2014;47:3734–43.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Michalek AJ, Buckley MR, Bonassar LJ, Cohen I, Iatridis JC. The effects of needle puncture injury on microscale shear strain in the intervertebral disc annulus fibrosus. Spine J. 2010;10:1098–105.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wade KR, Robertson PA, Thambyah A, Broom ND. How healthy discs herniate: a biomechanical and microstructural study investigating the combined effects of compression rate and flexion. Spine (Phila Pa 1976). 2014;39:1018–28.

    Article  Google Scholar 

  9. Cortes DH, Jacobs NT, DeLucca JF, Elliott DM. Elastic, permeability and swelling properties of human intervertebral disc tissues: a benchmark for tissue engineering. J Biomech. 2014;47:2088–94.

    Article  PubMed  Google Scholar 

  10. Huang CY, Gu WY. Effects of mechanical compression on metabolism and distribution of oxygen and lactate in intervertebral disc. J Biomech. 2008;41:1184–96.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jackson AR, Yuan TY, Huang CY, Brown MD, Gu WY. Nutrient transport in human annulus fibrosus is affected by compressive strain and anisotropy. Ann Biomed Eng. 2012;40:2551–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jackson AR, Yuan TY, Huang CY, Travascio F, Yong GuW. Effect of compression and anisotropy on the diffusion of glucose in annulus fibrosus. Spine (Phila Pa 1976). 2008;33:1–7.

    Article  Google Scholar 

  13. Cortes DH, Han WM, Smith LJ, Elliott DM. Mechanical properties of the extra-fibrillar matrix of human annulus fibrosus are location and age dependent. J Orthop Res. 2013;31:1725–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Desrochers J, Duncan NA. Strain transfer in the annulus fibrosus under applied flexion. J Biomech. 2010;43:2141–8.

    Article  PubMed  Google Scholar 

  15. Han WM, Nerurkar NL, Smith LJ, Jacobs NT, Mauck RL, Elliott DM. Multi-scale structural and tensile mechanical response of annulus fibrosus to osmotic loading. Ann Biomed Eng. 2012;40:1610–21.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hollingsworth NT, Wagner DR. The stress and strain states of the posterior annulus under flexion. Spine (Phila Pa 1976). 2012;37:E1134–9.

    Article  Google Scholar 

  17. Iatridis JC, ap Gwynn I. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. J Biomech. 2004;37:1165–75.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Isaacs JL, Vresilovic E, Sarkar S, Marcolongo M. Role of biomolecules on annulus fibrosus micromechanics: effect of enzymatic digestion on elastic and failure properties. J Mech Behav Biomed Mater. 2014;40:75–84.

    Article  PubMed  CAS  Google Scholar 

  19. Korecki CL, Kuo CK, Tuan RS, Iatridis JC. Intervertebral disc cell response to dynamic compression is age and frequency dependent. J Orthop Res. 2009;27:800–6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lewis NT, Hussain MA, Mao JJ. Investigation of nano-mechanical properties of annulus fibrosus using atomic force microscopy. Micron. 2008;39:1008–19.

    Article  PubMed  CAS  Google Scholar 

  21. Walter BA, Korecki CL, Purmessur D, Roughley PJ, Michalek AJ, Iatridis JC. Complex loading affects intervertebral disc mechanics and biology. Osteoarthr Cartil. 2011;19:1011–8.

    Article  CAS  Google Scholar 

  22. Iatridis JC, Nicoll SB, Michalek AJ, Walter BA, Gupta MS. Role of biomechanics in intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair? Spine J. 2013;13:243–62.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bron JL, Helder MN, Meisel HJ, Van Royen BJ, Smit TH. Repair, regenerative and supportive therapies of the annulus fibrosus: achievements and challenges. Eur Spine J. 2009;18:301–13.

    Article  PubMed  Google Scholar 

  24. Cho H, Park SH, Park K, et al. Construction of a tissue-engineered annulus fibrosus. Artif Organs. 2013;37:E131–8.

    Article  PubMed  CAS  Google Scholar 

  25. Bowles RD, Gebhard HH, Hartl R, Bonassar LJ. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine. Proc Natl Acad Sci U S A. 2011;108:13106–11.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Costi JJ, Stokes IA, Gardner-Morse M, Laible JP, Scoffone HM, Iatridis JC. Direct measurement of intervertebral disc maximum shear strain in six degrees of freedom: motions that place disc tissue at risk of injury. J Biomech. 2007;40:2457–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Guterl CC, See EY, Blanquer SB, et al. Challenges and strategies in the repair of ruptured annulus fibrosus. Eur Cells Mater. 2013;25:1–21.

    Article  CAS  Google Scholar 

  28. Tampier C, Drake JDM, Callaghan JP, McGill SM. Progressive disc herniation—an investigation of the mechanism using radiologic, histochemical, and microscopic dissection techniques on a porcine model. Spine. 2007;32:2869–74.

    Article  PubMed  Google Scholar 

  29. Ciapetti G, Granchi D, Devescovi V, et al. Ex vivo observation of human intervertebral disc tissue and cells isolated from degenerated intervertebral discs. Eur Spine J. 2012;21:S10–9.

    Article  PubMed  Google Scholar 

  30. Gregory DE, Bae WC, Sah RL, Masuda K. Anular delamination strength of human lumbar intervertebral disc. Eur Spine J. 2012;21:1716–23.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Iatridis JC, Nicoll SB, Michalek AJ, Walter BA, Gupta MS. Role of biomechanics in intervertebral disc degeneration and regenerative therapies: what needs repairing in the disc and what are promising biomaterials for its repair? Spine J. 2013;13:243–62.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pezowicz CA, Robertson PA, Broom ND. The structural basis of interlamellar cohesion in the intervertebral disc wall. J Anat. 2006;208:317–30.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Veres SP, Robertson PA, Broom ND. ISSLS prize winner: microstructure and mechanical disruption of the lumbar disc annulus part II: how the annulus fails under hydrostatic pressure. Spine. 2008;33:2711–20.

    Article  PubMed  Google Scholar 

  34. Roughley PJ. Biology of intervertebral disc aging and degeneration - Involvement of the extracellular matrix. Spine. 2004;29:2691–9.

    Article  PubMed  Google Scholar 

  35. Gregory DE, Bae WC, Sah RL, Masuda K. Disc degeneration reduces the delamination strength of the annulus fibrosus in the rabbit annular disc puncture model. Spine J. 2014;14:1265–71.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sharifi S, Bulstra SK, Grijpma DW, Kuijer R. Treatment of the degenerated intervertebral disc; closure, repair and regeneration of the annulus fibrosus. J Tissue Eng Regen Med. 2015;9:1120–32.

  37. Nerurkar NL, Mauck RL, Elliott DM. ISSLS prize winner: integrating theoretical and experimental methods for functional tissue engineering of the annulus fibrosus. Spine (Phila Pa 1976). 2008;33:2691–701.

    Article  Google Scholar 

  38. Sobajima S, Vadala G, Shimer A, Kim JS, Gilbertson LG, Kang JD. Feasibility of a stem cell therapy for intervertebral disc degeneration. Spine J. 2008;8:888–96.

    Article  PubMed  Google Scholar 

  39. Hudson KD, Alimi M, Grunert P, Hartl R, Bonassar LJ. Recent advances in biological therapies for disc degeneration: tissue engineering of the annulus fibrosus, nucleus pulposus and whole intervertebral discs. Curr Opin Biotechnol. 2013;24:872–9.

    Article  PubMed  CAS  Google Scholar 

  40. Lazebnik M, Singh M, Glatt P, Friis LA, Berkland CJ, Detamore MS. Biomimetic method for combining the nucleus pulposus and annulus fibrosus for intervertebral disc tissue engineering. J Tissue Eng Regen Med. 2011;5:e179–87.

    Article  PubMed  CAS  Google Scholar 

  41. Attia M, Santerre JP, Kandel RA. The response of annulus fibrosus cell to fibronectin-coated nanofibrous polyurethane-anionic dihydroxyoligomer scaffolds. Biomaterials. 2011;32:450–60.

    Article  PubMed  CAS  Google Scholar 

  42. Barker IA, Ablett MP, Gilbert HTJ, et al. A microstereolithography resin based on thiol-ene chemistry: towards biocompatible 3D extracellular constructs for tissue engineering. Biomater Sci. 2014;2:472–5.

    Article  CAS  PubMed  Google Scholar 

  43. Jeong CG, Francisco AT, Niu Z, Mancino RL, Craig SL, Setton LA. Screening of hyaluronic acid-poly(ethylene glycol) composite hydrogels to support intervertebral disc cell biosynthesis using artificial neural network analysis. Acta Biomater. 2014;10:3421–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Barreto Henriksson H, et al. Similar cellular migration patterns from niches in intervertebral disc and in knee-joint regions detected by in situ labeling: an experimental study in the New Zealand white rabbit. Stem Cell Res Ther. 2013;4:104.

    Article  PubMed  Google Scholar 

  45. Bruehlmann SB, Hulme PA, Duncan NA. In situ intercellular mechanics of the bovine outer annulus fibrosus subjected to biaxial strains. J Biomech. 2004;37:223–31.

    Article  PubMed  Google Scholar 

  46. Chan SCW, Gantenbein-Ritter B. Preparation of intact bovine tail intervertebral discs for organ culture. J Vis Exp. 2012;60:e3490.

    Google Scholar 

  47. Chan WC, et al. Coming together is a beginning: the making of an intervertebral disc. Birth Defects Res C Embryo Today. 2014;102:83–100.

    Article  PubMed  CAS  Google Scholar 

  48. Clouet J, Grimandi G, Pot-Vaucel M, et al. Identification of phenotypic discriminating markers for intervertebral disc cells and articular chondrocytes. Rheumatology. 2009;48:1447–50.

    Article  PubMed  CAS  Google Scholar 

  49. Elfervig MK, Minchew JT, Francke E, Tsuzaki M, Banes AJ. IL-1β sensitizes intervertebral disc annulus cells to fluid-induced shear stress. J Cell Biochem. 2001;82:290–8.

    Article  PubMed  CAS  Google Scholar 

  50. Feng G, Li L, Liu H, et al. Hypoxia differentially regulates human nucleus pulposus and annulus fibrosus cell extracellular matrix production in 3D scaffolds. Osteoarthr Cartil. 2013;21:582–8.

    Article  CAS  Google Scholar 

  51. Gonzales S, Rodriguez B, Barrera C, Huang CY. Measurement of ATP-induced membrane potential changes in IVD cells. Cell Mol Bioeng. 2014;7:598–606.

    Article  PubMed  CAS  Google Scholar 

  52. Gonzales S, Wang C, Levene H, Cheung HS, Huang CY. ATP promotes extracellular matrix biosynthesis of intervertebral disc cells. Cell Tissue Res. 2015;359:635–42.

    Article  PubMed  CAS  Google Scholar 

  53. Gruber HE, Leslie K, Ingram J, Norton HJ, Hanley EN. Cell-based tissue engineering for the intervertebral disc: in vitro studies of human disc cell gene expression and matrix production within selected cell carriers. Spine J. 2004;4:44–55.

    Article  PubMed  Google Scholar 

  54. Hegewald AA, Medved F, Feng D, et al. Enhancing tissue repair in annulus fibrosus defects of the intervertebral disc: analysis of a bio-integrative annulus implant in an in vivo ovine model. J Tissue Eng Regen Med. 2015;9:405–14.

    Article  PubMed  Google Scholar 

  55. Hsieh AH, Twomey JD. Cellular mechanobiology of the intervertebral disc: new directions and approaches. J Biomech. 2010;43:137–45.

    Article  PubMed  Google Scholar 

  56. Li J, Liu C, Guo Q, Yang H, Li B. Regional variations in the cellular, biochemical, and biomechanical characteristics of rabbit annulus fibrosus. PLoS ONE. 2014;9:e91799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Liu C, Guo Q, Li J, et al. Identification of rabbit annulus fibrosus-derived stem cells. PLoS ONE. 2014;9:e108239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Moon HJ, Yurube T, Lozito TP, et al. Effects of secreted factors in culture medium of annulus fibrosus cells on microvascular endothelial cells: elucidating the possible pathomechanisms of matrix degradation and nerve in-growth in disc degeneration. Osteoarthr Cartil. 2014;22:344–54.

    Article  CAS  Google Scholar 

  59. Xu H, Xu B, Yang Q, et al. Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold. PLoS ONE. 2014;9:e86723.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bhattacharjee M, Miot S, Gorecka A, et al. Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrosus tissue engineering. Acta Biomater. 2012;8:3313–25.

    Article  PubMed  CAS  Google Scholar 

  61. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue specific considerations. Eur Spine J. 2008;17:S467–79.

    Article  Google Scholar 

  62. Chang G, Kim HJ, Kaplan D, Vunjak-Novakovic G, Kandel RA. Porous silk scaffolds can be used for tissue engineering annulus fibrosus. Eur Spine J. 2007;16:1848–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Du LL, Zhu MF, Yang Q, et al. A novel integrated biphasic silk fibroin scaffold for intervertebral disc tissue engineering. Mater Lett. 2014;15:237–40.

    Article  CAS  Google Scholar 

  64. Ha HJ, Kim SH, Yoon SJ, et al. Evaluation of various scaffolds for tissue engineered biodisc using annulus fibrosus cells. Polym Korea. 2008;32:26–30.

    CAS  Google Scholar 

  65. Martin JT, Milby AH, Chiaro JA, et al. Translation of an engineered nanofibrous disc-like angle-ply structure for intervertebral disc replacement in a small animal model. Acta Biomater. 2014;10:2473–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Saad L, Spector M. Effects of collagen type on the behavior of adult canine annulus fibrosus cells in collagen-glycosaminoglycan scaffolds. J Biomed Mater Res A. 2004;71:233–41.

    Article  PubMed  CAS  Google Scholar 

  67. Vadala G, Mozetic P, Rainer A, et al. Bioactive electrospun scaffold for annulus fibrosus repair and regeneration. Eur Spine J. 2012;21:S20–6.

    Article  PubMed  Google Scholar 

  68. Wan Y, Feng G, Shen FH, Balian G, Laurencin CT, Li X. Novel biodegradable poly(1,8-octanediol malate) for annulus fibrosus regeneration. Macromol Biosci. 2007;7:1217–24.

    Article  PubMed  CAS  Google Scholar 

  69. Wan Y, Feng G, Shen FH, Laurencin CT, Li X. Biphasic scaffold for annulus fibrosus tissue regeneration. Biomaterials. 2008;29:643–52.

    Article  PubMed  CAS  Google Scholar 

  70. Wismer N, Grad S, Fortunato G, Ferguson SJ, Alini M, Eglin D. Biodegradable electrospun scaffolds for annulus fibrosus tissue engineering: effect of scaffold structure and composition on annulus fibrosus cells in vitro. Tissue Eng Part A. 2014;20:672–82.

    PubMed  CAS  Google Scholar 

  71. Wu YH, Xu BS, Yang Q, et al. A novel natural ECM-derived biphasic scaffold for intervertebral disc tissue engineering. Mater Lett. 2013;105:102–5.

    Article  CAS  Google Scholar 

  72. Busby GA, Grant MH, MacKay SP, Riches PE. Confined compression of collagen hydrogels. J Biomech. 2013;46:837–40.

    Article  PubMed  Google Scholar 

  73. Chang G, Kim HJ, Vunjak-Novakovic G, Kaplan DL, Kandel R. Enhancing annulus fibrosus tissue formation in porous silk scaffolds. J Biomed Mater Res A. 2010;92:43–51.

    Article  PubMed  CAS  Google Scholar 

  74. Guillaume O, Daly A, Lennon K, Gansau J, Buckley SF, Buckley CT. Shape-memory porous alginate scaffolds for regeneration of the annulus fibrosus: effect of TGF-beta3 supplementation and oxygen culture conditions. Acta Biomater. 2014;10:1985–95.

    Article  PubMed  CAS  Google Scholar 

  75. Helen W, Gough JE. Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass composite foam scaffolds in vitro. Acta Biomater. 2008;4:230–43.

    Article  PubMed  CAS  Google Scholar 

  76. Koepsell L, Remund T, Bao J, Neufeld D, Fong H, Deng Y. Tissue engineering of annulus fibrosus using electrospun fibrous scaffolds with aligned polycaprolactone fibers. J Biomed Mater Res A. 2011;99:564–75.

    Article  PubMed  CAS  Google Scholar 

  77. Nesti LJ, Li WJ, Shanti RM, et al. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam. Tissue Eng Part A. 2008;14:1527–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Park SH, Gil ES, Cho H, et al. Intervertebral disk tissue engineering using biphasic silk composite scaffolds. Tissue Eng Part A. 2012;18:447–58.

    Article  PubMed  CAS  Google Scholar 

  79. Park SH, Gil ES, Mandal BB, et al. Annulus fibrosus tissue engineering using lamellar silk scaffolds. J Tissue Eng Regen Med. 2012;6:s24–33.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pirvu T, Blanquer SB, Benneker LM, et al. A combined biomaterial and cellular approach for annulus fibrosus rupture repair. Biomaterials. 2015;42:11–9.

    Article  PubMed  CAS  Google Scholar 

  81. Sha’ban M, Yoon SJ, Ko YK, et al. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold. J Biomater Sci Polym Ed. 2008;19:1219–37.

    Article  PubMed  Google Scholar 

  82. Shao X, Hunter CJ. Developing an alginate/chitosan hybrid fiber scaffold for annulus fibrosus cells. J Biomed Mater Res A. 2007;82:701–10.

    Article  PubMed  CAS  Google Scholar 

  83. Song JE, Kim EY, Ahn WY, et al. The potential of DBP gels containing intervertebral disc cells for annulus fibrosus supplementation: in vivo. J Tissue Eng Regen Med. 2015;9:E98–107.

  84. Turner KG, Ahmed N, Santerre JP, Kandel RA. Modulation of annulus fibrosus cell alignment and function on oriented nanofibrous polyurethane scaffolds under tension. Spine J. 2014;14:424–34.

    Article  PubMed  Google Scholar 

  85. Wilda H, Gough JE. In vitro studies of annulus fibrosus disc cell attachment, differentiation and matrix production on PDLLA/45S5 Bioglass composite films. Biomaterials. 2006;27:5220–9.

    Article  PubMed  CAS  Google Scholar 

  86. Xu B, Xu H, Wu Y, et al. Intervertebral disc tissue engineering with natural extracellular matrix-derived biphasic composite scaffolds. PLoS ONE. 2015;10:e0124774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Bowles RD, Williams RM, Zipfel WR, Bonassar LJ. Self-assembly of aligned tissue engineered annulus fibrosus and intervertebral disc composite via collagen gel contraction. Tissue Eng Part A. 2010;16:1339–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Chik TK, Ma XY, Choy TH, et al. Photochemically crosslinked collagen annulus plug: a potential solution solving the leakage problem of cell-based therapies for disc degeneration. Acta Biomater. 2013;9:8128–39.

    Article  PubMed  CAS  Google Scholar 

  89. Grunert P, Borde BH, Hudson KD, Macielak MR, Bonassar LJ, Hartl R. Annular repair using high-density collagen gel: a rat-tail in vivo model. Spine (Phila Pa 1976). 2014;39:198–206.

    Article  Google Scholar 

  90. Guillaume O, Naqvi SM, Lennon K, Buckley CT. Enhancing cell migration in shape-memory alginate-collagen composite scaffolds: in vitro and ex vivo assessment for intervertebral disc repair. J Biomater Appl. 2015;29:1230–46.

    Article  PubMed  CAS  Google Scholar 

  91. Koepsell L, Zhang L, Neufeld D, Fong H, Deng Y. Electrospun nanofibrous polycaprolactone scaffolds for tissue engineering of annulus fibrosus. Macromol Biosci. 2011;11:391–9.

    Article  PubMed  CAS  Google Scholar 

  92. Nerurkar NL, Baker BM, Sen S, Wible EE, Elliott DM, Mauck RL. Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nat Mater. 2009;8:986–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Nerurkar NL, Sen S, Baker BM, Elliott DM, Mauck RL. Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds. Acta Biomater. 2011;7:485–91.

    Article  PubMed  CAS  Google Scholar 

  94. Revell PA, Damien E, Di SilvioL, Gurav N, Longinotti C, Ambrosio L. Tissue engineered intervertebral disc repair in the pig using injectable polymers. J Mater Sci Mater Med. 2007;18:303–8.

    Article  PubMed  CAS  Google Scholar 

  95. Schek RM, Michalek AJ, Iatridis JC. Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair. Eur Cell Mater. 2011;21:373–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sharifi S, van Kooten TG, Kranenburg HJ, et al. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network. Biomaterials. 2013;34:8105–13.

    Article  PubMed  CAS  Google Scholar 

  97. Yeganegi M, Kandel RA, Santerre JP. Characterization of a biodegradable electrospun polyurethane nanofiber scaffold: mechanical properties and cytotoxicity. Acta Biomater. 2010;6:3847–55.

    Article  PubMed  CAS  Google Scholar 

  98. Chik TK, Chooi WH, Li YY, et al. Bioengineering a multicomponent spinal motion segment construct—a 3D model for complex tissue engineering. Adv Healthc Mater. 2015;4:99–112.

    Article  PubMed  CAS  Google Scholar 

  99. Driscoll TP, Nakasone RH, Szczesny SE, Elliott DM, Mauck RL. Biaxial mechanics and interlamellar shearing of stem-cell seeded electrospun angle-ply laminates for annulus fibrosus tissue engineering. J Orthop Res. 2013;31:864–70.

    Article  PubMed  CAS  Google Scholar 

  100. Driscoll TP, Nerurkar NL, Jacobs NT, Elliott DM, Mauck RL. Fiber angle and aspect ratio influence the shear mechanics of oriented electrospun nanofibrous scaffolds. J Mech Behav Biomed Mater. 2011;4:1627–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Borde B, Grunert P, Hartl R, Bonassar LJ. Injectable, high-density collagen gels for annulus fibrosus repair: an in vitro rat tail model. J Biomed Mater Res A 2014;11.

  102. Bron JL, van der Veen AJ, Helder MN, et al. Biomechanical and in vivo evaluation of experimental closure devices of the annulus fibrosus designed for a goat nucleus replacement model. Eur Spine J. 2010;19:1347–55.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Chuah YJ, Lee WC, Wong HK, Kang Y, Hee HT. Three-dimensional development of tensile pre-strained annulus fibrosus cells for tissue regeneration: an in vitro study. Exp Cell Res. 2015;331:176–82.

    Article  PubMed  CAS  Google Scholar 

  104. Mizuno H, Roy AK, Zaporojan V, Vacanti CA, Ueda M, Bonassar LJ. Biomechanical and biochemical characterization of composite tissue-engineered intervertebral discs. Biomaterials. 2006;27:362–70.

    Article  PubMed  CAS  Google Scholar 

  105. Nerurkar NL, Elliott DM, Mauck RL. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res. 2007;25:1018–28.

    Article  PubMed  CAS  Google Scholar 

  106. Blanquer SB, Grijpma DW, Poot AA. Delivery systems for the treatment of degenerated intervertebral discs. Adv Drug Deliv Rev. 2015;84:172–87.

    Article  PubMed  CAS  Google Scholar 

  107. Pritchard EM, Valentin T, Boison D, Kaplan DL. Incorporation of proteinase inhibitors into silk-based delivery devices for enhanced control of degradation and drug release. Biomaterials. 2011;32:909–18.

    Article  PubMed  CAS  Google Scholar 

  108. Chan SCW, Gantenbein-Ritter B. Intervertebral disc regeneration or repair with biomaterials and stem cell therapy-feasible or fiction? Swiss Med Wkly 31 2012;142.

  109. Gebhard H, Bowles R, Dyke J, et al. Total disc replacement using a tissue-engineered intervertebral disc in vivo: new animal model and initial results. Evid Based spine-Care J. 2010;1:62–6.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hiyama A, Mochida J, Sakai D. Stem cell applications in intervertebral disc repair. Cell Mol Biol. 2008;54:24–32.

    PubMed  CAS  Google Scholar 

  111. Jin L, Shimmer AL, Li X. The challenge and advancement of annulus fibrosus tissue engineering. Eur Spine J. 2013;22:1090–100.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kalson NS, Richardson S, Hoyland JA. Strategies for regeneration of the intervertebral disc. Regen Med. 2008;3:717–29.

    Article  PubMed  CAS  Google Scholar 

  113. Kandel R, Roberts S, Urban JPG. Tissue engineering and the intervertebral disc: the challenges. Eur Spine J. 2008;17:S480–91.

    Article  Google Scholar 

  114. Masuda K, Lotz JC. New challenges for intervertebral disc treatment using regenerative medicine. Tissue Eng Part B Rev. 2010;16:147–58.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Silva-Correia J, Correia SI, Oliveira JM, Reis RL. Tissue engineering strategies applied in the regeneration of the human intervertebral disk. Biotechnol Adv. 2013;31:1514–31.

    Article  PubMed  CAS  Google Scholar 

  116. Blanquer SBG, Sharifi S, Grijpma DW. Development of poly(trimethylene carbonate) network implants for annulus fibrosus tissue engineering. J Appl Biomater Funct. 2012;10:177–84.

    Google Scholar 

  117. Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet. 2010;376:440–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31:6121–30.

    Article  PubMed  CAS  Google Scholar 

  119. Kang H-W, Seol Y-J, Cho D-W. Development of an indirect solid freeform fabrication process based on microstereolithography for 3D porous scaffolds. J Micromech Microeng. 2009;19:015011.

    Article  Google Scholar 

  120. Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials. 2003;24:401–16.

    Article  PubMed  CAS  Google Scholar 

  121. Calabrese R, Kaplan DL. Silk ionomers for encapsulation and differentiation of human MSCs. Biomaterials. 2012;33:7375–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26:2775–85.

    Article  PubMed  CAS  Google Scholar 

  123. Numata K, Cebe P, Kaplan DL. Mechanism of enzymatic degradation of beta-sheet crystals. Biomaterials. 2010;31:2926–33.

    Article  PubMed  CAS  Google Scholar 

  124. Wray LS, Rnjak-Kovacina J, Mandal BB, Schmidt DF, Gil ES, Kaplan DL. A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs. Biomaterials. 2012;33:9214–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. An B, DesRochers TM, Qin GK, et al. The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior. Biomaterials. 2013;34:402–12.

    Article  PubMed  CAS  Google Scholar 

  126. Bhardwaj N, Nguyen QT, Chen AC, Kaplan DL, Sah RL, Kundu SC. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials. 2011;32:5773–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Bhattacharjee M, Schultz-Thater E, Trella E, et al. The role of 3D structure and protein conformation on the innate and adaptive immune responses to silk-based biomaterials. Biomaterials. 2013;34:8161–71.

    Article  PubMed  CAS  Google Scholar 

  128. Lu QA, Wang XL, Lu SZ, Li MZ, Kaplan DL, Zhu HS. Nanofibrous architecture of silk fibroin scaffolds prepared with a mild self-assembly process. Biomaterials. 2011;32:1059–67.

    Article  PubMed  CAS  Google Scholar 

  129. Wang YZ, Kim HJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials. 2006;27:6064–82.

    Article  PubMed  CAS  Google Scholar 

  130. Zhang YF, Wu CT, Friis T, Xiao Y. The osteogenic properties of CaP/silk composite scaffolds. Biomaterials. 2010;31:2848–56.

    Article  PubMed  CAS  Google Scholar 

  131. Blaker JJ, Maquet V, Jerome R, Boccaccini AR, Nazhat SN. Mechanical properties of highly porous PDLLA/Bioglass (R) composite foams as scaffolds for bone tissue engineering. Acta Biomater. 2005;1:643–52.

    Article  PubMed  CAS  Google Scholar 

  132. Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerome R. Porous poly(alphahydroxyacid)/Bioglass (R) composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation. Biomaterials. 2004;25:4185–94.

    Article  PubMed  CAS  Google Scholar 

  133. Li D, Wang YL, Xia YN. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett. 2003;3:1167–71.

    Article  CAS  Google Scholar 

  134. Santerre JP, Woodhouse K, Laroche G, Labow RS. Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials. 2005;26:7457–70.

    Article  PubMed  CAS  Google Scholar 

  135. Soares RR, Carone C, Einloft S, Ligabue R, Monteiro WF. Synthesis and characterization of waterborne polyurethane/ZnO composites. Polym Bull. 2014;71:829–38.

    Article  CAS  Google Scholar 

  136. Fernandez-d’Arlas B, Eceiza A. Functionalization of multiwalled carbon nanotubes with urethane segments and their interaction with solvents and a polyurethane elastomer. J Nanopart Res. 2013;16:1–10.

    Google Scholar 

  137. Stokes K, Mcvenes R, Anderson JM. Polyurethane elastomer biostability. J Biomater Appl. 1995;9:321–54.

    Article  PubMed  CAS  Google Scholar 

  138. Smith R, Oliver C, Williams DF. The enzymatic degradation of polymers in vitro. J Biomed Mater Res. 1987;21:991–1003.

    Article  PubMed  CAS  Google Scholar 

  139. Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg. 2005;79:1072–80.

    Article  PubMed  Google Scholar 

  140. Yang L. Polar surface chemistry of nanofibrous polyurethane scaffold affects annulus fibrosus cell attachment and early matrix accumulation. J Biomed Mater Res, Part A. 2009;91A:1089–99.

    Article  CAS  Google Scholar 

  141. Spiteri C, Raizman I, Pilliar RM, Kande RA. Matrix accumulation by articular chondrocytes during mechanical stimulation is influenced by integrin-mediated cell spreading. J Biomed Mater Res A. 2010;94A:122–9.

    Article  CAS  Google Scholar 

  142. Huang C, et al. Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf B Biointerfaces. 2011;82:307–15.

    Article  PubMed  CAS  Google Scholar 

  143. Elsdale T, Bard J. Collagen substrata for studies on cell behavior. J Cell Biol. 1972;54:626–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Chen L, et al. A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility. J Biomed Mater Res, Part A. 2011;99A:395–409.

    Article  CAS  Google Scholar 

  145. Zhu CH, Fan DD, Duan ZZ, et al. Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering. J Biomed Mater Res A. 2009;89A:829–40.

    Article  CAS  Google Scholar 

  146. Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules. 2002;3:1233–9.

    Article  PubMed  CAS  Google Scholar 

  147. Guan JJ, Gao CY, Feng LX, Shen JC. Functionalizing of polyurethane surfaces by photo grafting with hydrophilic monomers. J Appl Polym Sci. 2000;77:2505–12.

    Article  CAS  Google Scholar 

  148. Stankus JJ, Guan JJ, Wagner WR. Fabrication of biodegradable elastomeric scaffolds with sub-micron morphologies. J Biomed Mater Res A. 2004;70A:603–14.

    Article  CAS  Google Scholar 

  149. Mi HY, Salick MR, Jing X, Crone WC, Peng XF, Turng LS. Electrospinning of uni-directionally and orthogonally aligned thermoplastic polyurethane nanofibers: Fiber orientation and cell migration. J Biomed Mater Res A. 2015;103:593–603.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Tavakoli.

Ethics declarations

Conflict of interest

The author has no commercial relationship that may lead to a conflict of interest.

Ethical statement

There are no animal experiments carried out for this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakoli, J. Tissue Engineering of the Intervertebral Disc’s Annulus Fibrosus: A Scaffold-Based Review Study. Tissue Eng Regen Med 14, 81–91 (2017). https://doi.org/10.1007/s13770-017-0024-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13770-017-0024-7

Keywords

Navigation