Skip to main content
Log in

Tissue Engineering: Biomaterials for Disc Repair

  • Intervertebral Disk Degeneration and Regeneration (MV Risbud, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The degeneration of the intervertebral disc (IVD) is a progressive disease that involves drastic structural and molecular changes due to increased catabolism in the annulus fibrosus (AF) and nucleus pulposus (NP) causing inflammation, and eventually, lower back pain.

Recent Findings

As alternatives to the highly invasive and conservative surgical interventions, more regenerative tissue engineering approaches using biomaterials have been suggested. Natural and synthetic biomaterials are being extensively explored for either separate or collective NP and AF repair, for conferring differing functionalities to the tissue rudiment. The need for biomaterials arises from their potential to provide structural support, pain alleviation, increased anabolism, a carrier for cells and sustained release of therapeutic molecules to target specific signaling pathways or have therapeutic effects of their own.

Summary

Here, we review the biomaterials that have been studied for disc repair where the aim is to reinstate the healthy tissue composition and disc height and restore the function of the disc through regeneration. The complexity of the disc tissue and the information gaps in the disease mechanism still remains a challenge facing a satisfactory tissue engineering strategy for IVD regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ho-Pham LT, Lai TQ, Mai LD, Doan MC, Pham HN, Nguyen TV. Prevalence and pattern of radiographic intervertebral disc degeneration in Vietnamese : a population-based study. Calcif Tissue Int. 2015. https://doi.org/10.1007/s00223-015-9986-4.

    CAS  PubMed  Google Scholar 

  2. Shankar H, Scarlett JA, Abram SE. Anatomy and pathophysiology of intervertebral disc disease. Tech Reg Anesth Pain Manag. 2009;13(2):67–75.

    Google Scholar 

  3. Chou AI, Bansal A, Miller GJ, Nicoll SB. The effect of serial monolayer passaging on the collagen expression profile of outer and inner anulus fibrosus cells. Spine (Phila Pa 1976). 2006;31(17):1875–81.

    Google Scholar 

  4. Francoise M, Abdul AM. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine (Phila. Pa. 1976). 1990;15(5):402–10.

    Google Scholar 

  5. Maroudas A, Stockwell RA, Nachemson A, Urban J. Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. Anatomy. 1975;121(1):113–30.

    Google Scholar 

  6. Urban JP, Roberts S. Development and degeneration of the intervertebral discs. Mol Med Today. 1995;1(7):329–35.

    CAS  PubMed  Google Scholar 

  7. McCann MR, Séguin CA. Notochord cells in intervertebral disc development and degeneration. J Dev Biol. 2016;4(1):1–18.

    Google Scholar 

  8. Wuertz K, Vo N, Kletsas D, Boos N. Inflammatory and catabolic signalling in intervertebral discs: the roles of NF-κB and MAP kinases. Eur Cell Mater. 2012;23:103–20.

    CAS  PubMed  Google Scholar 

  9. Cs-Szabo G, Ragasa-San Juan D, Turumella V, Masuda K, Thonar EJ-MA, An HS. Changes in mRNA and protein levels of proteoglycans of the anulus fibrosus and nucleus pulposus during intervertebral disc degeneration. Spine (Phila. Pa. 1976). 2002;27(20):2212–9.

    Google Scholar 

  10. Le Maitre CL, Pockert A, Buttle DJ, Freemont AJ, Hoyland JA. Matrix synthesis and degradation in human intervertebral disc degeneration. Biochem Soc Trans. 2007;35(Part 4):652–5.

    PubMed  Google Scholar 

  11. Le Maitre CL, Freemont AJ, Hoyland JA. The role of interleukin-1 in the pathogenesis of human intervertebral disc degeneration. Arthritis Res Ther. Jan. 2005;7(4):R732–45.

    PubMed  PubMed Central  Google Scholar 

  12. Burke JG, Watson RWG, McCormack D, Dowling FE, Walsh MG, Fitzpatrick JM. Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J Bone Joint Surg. 2002;84(2):196–201.

    CAS  Google Scholar 

  13. Shamji MF, et al. Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum. 2010;62(7):1974–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Altun I. Cytokine profile in degenerated painful intervertebral disc: variability with respect to duration of symptoms and type of disease. Spine J. 2016;16(7):857–61.

    PubMed  Google Scholar 

  15. Purmessur D, a Walter B, Roughley PJ, Laudier DM, Hecht AC, Iatridis J. A role for TNFα in intervertebral disc degeneration: a non-recoverable catabolic shift. Biochem Biophys Res Commun. 2013;433(1):151–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang J, Markova D, Anderson DG, Zheng Z, Shapiro IM, Risbud MV. TNF-alfa and IL-1beta promote a disintegrin-like and metalloprotease with thrombospondin type I motif-5-mediated aggrecan degradation through syndecan-4 in intervertebral disc. J Biol Chem. 2011;286(46):39738–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Anderson DG, Albert TJ. The molecular basis of intervertebral disk degeneration. Semin Spine Surg. Dec. 2003;15(4):352–60.

    Google Scholar 

  18. Stefanakis M, et al. Annulus fissures are mechanically and chemically conducive to the ingrowth of nerves and blood vessels. Spine (Phila. Pa. 1976). 2012;37(22):1883–91.

    Google Scholar 

  19. García-Cosamalón J, et al. Intervertebral disc, sensory nerves and neurotrophins: who is who in discogenic pain? J Anat. 2010;217(1):1–15.

    PubMed  PubMed Central  Google Scholar 

  20. Iatridis James C, Weidenbaum M, Setton LA, Mow VC. Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine (Phila Pa 1976). 1996;21(10):1174–84.

    Google Scholar 

  21. Kushchayev SV, et al. ABCs of the degenerative spine. Insights Imaging. 2018;9:253–74. https://doi.org/10.1007/s13244-017-0584-z.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Borem R, Madeline A, Walters J, Mayo H, Gill S, Mercuri J. Angle-ply biomaterial scaffold for annulus fibrosus repair replicates native tissue mechanical properties, restores spinal kinematics, and supports cell viability. Acta Biomater. 2017;58:254–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zeng Y, et al. Injectable microcryogels reinforced alginate encapsulation of mesenchymal stromal cells for leak-proof delivery and alleviation of canine disc degeneration. Biomaterials. 2015;59:53–65.

    CAS  PubMed  Google Scholar 

  24. Zhou X, et al. Genipin cross-linked type II collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus. Acta Biomater. 2018. https://doi.org/10.1016/j.actbio.2018.03.019.

    CAS  PubMed  Google Scholar 

  25. Navaro Y, et al. Matrix stiffness determines the fate of nucleus pulposus–derived stem cells. Biomaterials. 2015;49:68–76.

    CAS  PubMed  Google Scholar 

  26. Frauchiger DA, Tekari A, Wöltje M, Fortunato G, Benneker LM, Gantenbein B. A review of the application of reinforced hydrogels and silk as biomaterials for intervertebral disc repair. Eur Cell Mater. 2017;34:271–90.

    CAS  PubMed  Google Scholar 

  27. Pereira DR, Oliveira JM, Reis RL. Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus fibrosus tissue regeneration. Nanomed Nanotechnol Biol Med:2017. https://doi.org/10.1016/j.nano.2017.11.011.

    CAS  Google Scholar 

  28. Iu J, Santerre JP, Kandel RA. Towards engineering distinct multi-lamellated outer and inner annulus fibrosus tissues. J Orthop Res. 2017:1–10. https://doi.org/10.1002/jor.23793.

    Google Scholar 

  29. Sloan SR, Galesso D, Secchieri C, Berlin C, Hartl R, Bonassar LJ. Initial investigation of individual and combined annulus fibrosus and nucleus pulposus repair ex vivo. Acta Biomater. 2017;59:192–9.

    CAS  PubMed  Google Scholar 

  30. Pennicooke B, et al. Annulus fibrosus repair using high-density collagen gel. Spine (Phila. Pa. 1976). 2018;43(4):208–15.

    Google Scholar 

  31. Zhu Y, et al. Development of kartogenin-conjugated chitosan–hyaluronic acid hydrogel for nucleus pulposus regeneration. Biomater Sci. 2017;5:784–91.

    CAS  PubMed  Google Scholar 

  32. Gan Y, et al. An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration. Biomaterials. 2017;136:12–28.

    CAS  PubMed  Google Scholar 

  33. Tsaryk R, et al. Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration. Acta Biomater. 2015;20:10–21.

    CAS  PubMed  Google Scholar 

  34. Sivan SS, et al. Injectable hydrogels with high fixed charge density and swelling pressure for nucleus pulposus repair: biomimetic glycosaminoglycan analogues. Acta Biomater. 2014;10:1124–33.

    CAS  PubMed  Google Scholar 

  35. Antunes JC, et al. Poly (γ-glutamic acid ) and poly (γ-glutamic acid)-based nanocomplexes enhance type II collagen production in intervertebral disc. J Mater Sci Mater Med. 2017;28(6):1–17.

    CAS  Google Scholar 

  36. Growney Kalaf EA, Pendyala M, Bledsoe JG, Sell SA. Characterization and restoration of degenerated IVD function with an injectable, in situ gelling alginate hydrogel: an in vitro and ex vivo study. J Mech Behav Biomed Mater. 2017;72:229–40.

    CAS  PubMed  Google Scholar 

  37. Vicente AP-S, et al. Self-healing dynamic hydrogel as injectable shock-absorbing artificial nucleus pulposus. Biomacromolecules. 2017;18:2360–−2370.

    Google Scholar 

  38. Long RG, et al. In vitro and biomechanical screening of polyethylene glycol and poly(trimethylene carbonate) block copolymers for annulus fibrosus repair. J Tissue Eng Regen Med. 2018;12:727–36.

    Google Scholar 

  39. Cruz MA, et al. Cell-seeded adhesive biomaterial for repair of annulus fibrosus defects in intervertebral discs. Tissue Eng:2017. https://doi.org/10.1089/ten.TEA.2017.0334.

    CAS  PubMed  Google Scholar 

  40. Kang R, et al. Cyanoacrylate medical glue application in intervertebral disc annulus defect repair: mechanical and biocompatible evaluation. J Biomed Mater Res Part B. 2017;105B:14–20.

    Google Scholar 

  41. Ma J, et al. A novel electrospun-aligned nanoyarn/three- dimensional porous nanofibrous hybrid scaffold for annulus fibrosus tissue engineering. Int J Nanomedicine. 2018;13:1553–67.

    PubMed  PubMed Central  Google Scholar 

  42. Xin L, Zhang C, Zhong F, Fan S, Wang W, Wang Z. Minimal invasive annulotomy for induction of disc degeneration and implantation of poly (lactic-co-glycolic acid) (PLGA) plugs for annular repair in a rabbit model. Eur J Med Res. 2016;21(7):1–11.

    Google Scholar 

  43. Martin JT, et al. In vivo performance of an acellular disc-like angle ply structure (DAPS) for total disc replacement in a small animal model. J Orthop Res. 2016:1–9. https://doi.org/10.1002/jor.23310.

    PubMed  Google Scholar 

  44. Siskey R, Ciccarelli L, Lui MKC, Kurtz SM. Are PEEK-on-ceramic bearings an option for total disc arthroplasty? An in vitro tribology study. Clin Orthop Relat Res. 2016;474:2428–40.

    PubMed  PubMed Central  Google Scholar 

  45. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88–95.

    Google Scholar 

  46. Larrañaga A, et al. Antioxidant functionalized polymer capsules to prevent oxidative stress. Acta Biomater. 2017;67:21–31.

    PubMed  Google Scholar 

  47. Gan Y, et al. A controlled release codelivery system of MSCs encapsulated in dextran/gelatin hydrogel with TGF-B3-loaded nanoparticles for nucleus pulposus regeneration. Stem Cells Int. 9042019:2016.

  48. Bian Z, Sun J. Development of a KLD-12 polypeptide/TGF-β1-tissue scaffold promoting the differentiation of mesenchymal stem cell into nucleus pulposus-like cells for treatment of intervertebral disc degeneration. Int J Clin Exp Pathol. 2015;8(2):1093–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tellegen AR, et al. Intradiscal application of a PCLA–PEG–PCLA hydrogel loaded with celecoxib for the treatment of back pain in canines: what’s in it for humans? J Tissue Eng Regen Med. 2018;12:642–52.

    CAS  PubMed  Google Scholar 

  50. Likhitpanichkul M, et al. Fibrin-genipin annulus fibrosus sealant as a delivery system for anti-TNFα drug. Spine J. 2015;15(2015):2045–54.

    PubMed  PubMed Central  Google Scholar 

  51. Gorth DJ, et al. IL-1ra delivered from poly(lactic-co-glycolic acid) microspheres attenuates IL-1beta mediated degradation of nucleus pulposus in vitro. Arthritis Res Ther. 2012;14(4):R179.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Feng G, et al. Injectable nanofibrous spongy microspheres for NR4A1 plasmid DNA transfection to reverse fibrotic degeneration and support disc regeneration. Biomaterials. 2017;131:86–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Fontana G, Thomas D, Collin E, Pandit A. Microgel microenvironment primes adipose-derived stem cells towards an NP cells-like phenotype. Adv Healthc Mater. 2014;3(12):2012–22.

    CAS  PubMed  Google Scholar 

  54. Thorpe AA, et al. Thermally triggered hydrogel injection into bovine intervertebral disc tissue explants induces differentiation of mesenchymal stem cells and restores mechanical function. Acta Biomater. 2017;54:212–26.

    CAS  PubMed  Google Scholar 

  55. Bhunia BK, Kaplan DL, Mandal BB. Silk-based multilayered angle-ply annulus fibrosus construct to recapitulate form and function of the intervertebral disc. Proc Natl Acad Sci. 2018;115(3):477–82.

    CAS  PubMed  Google Scholar 

  56. Xu X, Hu J, Lu H. Histological observation of a gelatin sponge transplant loaded with bone marrow-derived mesenchymal stem cells combined with platelet-rich plasma in repairing an annulus defect. PLoS One. 2017;12(2):1–15.

    Google Scholar 

  57. Frith JE, et al. Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration. Biomaterials. 2014;35(4):1150–62.

    CAS  PubMed  Google Scholar 

  58. Frith JE, et al. An injectable hydrogel incorporating mesenchymal precursor cells and pentosan polysulphate for intervertebral disc regeneration. Biomaterials. 2013;34(37):9430–40.

    CAS  PubMed  Google Scholar 

  59. Li YY, et al. Delivering mesenchymal stem cells in collagen microsphere carriers to rabbit degenerative disc: reduced risk of osteophyte formation. Tissue Eng A. 2014;20(9–10):1379–91.

    CAS  Google Scholar 

  60. Gruber HE, Leslie K, Ingram J, Norton HJ, Hanley EN. Cell-based tissue engineering for the intervertebral disc: in vitro studies of human disc cell gene expression and matrix production within selected cell carriers. Spine J. 2004;4(1):44–55.

    PubMed  Google Scholar 

  61. Sakai D, Andersson GBJ. Stem cell therapy for intervertebral disc regeneration: obstacles and solutions. Nat Rev Rheumatol. 2015;11(4):243–56.

    PubMed  Google Scholar 

  62. Helen W, Merry CLR, Blaker JJ, Gough JE. Three-dimensional culture of annulus fibrosus cells within PDLLA/bioglass composite foam scaffolds: assessment of cell attachment , proliferation and extracellular matrix production. Biomaterials. 2007;28:2010–20.

    CAS  PubMed  Google Scholar 

  63. Halloran DO, Grad S, Stoddart M, Dockery P, Alini M, Pandit A. An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials. 2008;29:438–47.

    CAS  PubMed  Google Scholar 

  64. Chang G, Kim HJ, Kaplan D, Vunjak-Novakovic G, Kandel RA. Porous silk scaffolds can be used for tissue engineering annulus fibrosus. Eur Spine J. 2007;16:1848–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Collin EC, et al. An injectable vehicle for nucleus pulposus cell-based therapy. Biomaterials. 2011;32:2862–70.

    CAS  PubMed  Google Scholar 

  66. Nerurkar NL, Elliott DM, Mauck RL. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering. J Orthop Res. 2007:1018–28. https://doi.org/10.1002/jor.

  67. Attia M, Santerre JP, Kandel RA. The response of annulus fibrosus cell to fibronectin-coated nanofibrous polyurethane-anionic dihydroxyoligomer scaffolds. Biomaterials. 2011;32:450–60.

    CAS  PubMed  Google Scholar 

  68. Bhattacharjee M, et al. Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation : towards annulus fibrosus tissue engineering. Acta Biomater. 2012;8:3313–25.

    CAS  PubMed  Google Scholar 

  69. Park S, et al. Annulus fibrosus tissue engineering using lamellar silk scaffolds. J Tissue Eng Regen Med. 2012;6(Suppl 3):s24–33.

    PubMed  PubMed Central  Google Scholar 

  70. Omlor GW, et al. Injection of a polymerized hyaluronic acid/collagen hydrogel matrix in an in vivo porcine disc degeneration model. Eur Spine J. 2012;21:1700–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jeong CG, Francisco AT, Niu Z, Mancino RL, Craig SL, Setton LA. Screening of hyaluronic acid-poly(ethylene glycol) composite hydrogels to support intervertebral disc cell biosynthesis using artificial neural network analysis. Acta Biomater. 2014;10:3421–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kazezian Z, Li Z, Alini M, Grad S, Pandit A. Injectable hyaluronic acid down-regulates interferon signaling molecules , IGFBP3 and IFIT3 in the bovine intervertebral disc. Acta Biomater. 2017;52:118–29.

    CAS  PubMed  Google Scholar 

  73. Yu-Chun C, We-Yu S, Shu-Hua Y, Amit G, Feng-Huei L. In situ forming hydrogels composed of oxidized high molecular weight hyaluronic acid and gelatin for nucleus pulposus regeneration. Acta Biomater. 2013;9:5181–93.

    Google Scholar 

  74. Lee H, Hwang C, Kim H, Jeong S. Enhancement of bio-stability and mechanical properties of hyaluronic acid hydrogels by tannic acid treatment. Carbohydr Polym. 2018;186:290–8.

    CAS  PubMed  Google Scholar 

  75. Raspanti M, Caravà E, Sgambato A, Natalello A, Russo L, Cipolla L. The collaggrecan: synthesis and visualization of an artificial proteoglycan. Int J Biol Macromol. 2016;86:65–70.

    CAS  PubMed  Google Scholar 

  76. Yuan D, et al. Regenerative intervertebral disc endplate based on biomimetic three-dimensional scaffolds. Spine (Phila. Pa. 1976). 2017;42(5):E260–6.

    Google Scholar 

  77. Li Z, et al. Heterodimeric BMP-2/7 for nucleus pulposus regeneration — In vitro and ex vivo studies. J Orthop Res. 2017:51–60. https://doi.org/10.1002/jor.23351.

    CAS  PubMed  Google Scholar 

  78. Paglia DN, Singh H, Karukonda T, Drissi H, Moss IL. PDGF-BB delays degeneration of the intervertebral discs in a rabbit preclinical model. Spine. 2016;41(8):E449–58.

    PubMed  Google Scholar 

  79. Teixeira GQ, et al. A degenerative/proinflammatory intervertebral disc organ culture: an ex vivo model for anti-inflammatory drug and cell therapy. Tissue Eng Part C. 2016;22(1):8–19.

    CAS  Google Scholar 

  80. Ahn J, et al. Transplantation of human Wharton’s jelly-derived mesenchymal stem cells highly expressing TGFβ receptors in a rabbit model of disc degeneration. Stem Cell Res Ther. 2015;6(190):1–13.

    Google Scholar 

  81. Pan Z, et al. Therapeutic effects of gefitinib-encapsulated thermosensitive injectable hydrogel in intervertebral disc degeneration. Biomaterials. 2018;160:56–68.

    CAS  PubMed  Google Scholar 

  82. Costa J, Silva-correia J, Pinto V, Morais S, Miguel J, Luís R. Engineering patient-specific bioprinted constructs for treatment of degenerated intervertebral disc. Mater Today Commun. 2018:1–7. https://doi.org/10.1016/j.mtcomm.2018.01.011.

  83. Khandaker M, Riahanizad S. Evaluation of electrospun nanofiber-anchored silicone for the degenerative intervertebral disc. J Healthc Eng. 2017;2017:1–8. https://doi.org/10.1155/2017/5283846.

    Article  Google Scholar 

  84. Sato M, et al. Tissue engineering of the intervertebral disc with cultured annulus fibrosus cells using atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS scaffold). Med Biol Eng Comput. 2003;41:365–71.

    CAS  PubMed  Google Scholar 

  85. Isa ILM, et al. Hyaluronic acid based hydrogels attenuate inflammatory receptors and neurotrophins in interleukin-1β induced inflammation model of nucleus pulposus cells. Biomacromolecules. 2015;16(6):1714–25.

    CAS  PubMed  Google Scholar 

  86. Mohd Isa IL, et al. Implantation of hyaluronic acid hydrogel prevents the pain phenotype in a rat model of intervertebral disc injury. Sci Adv. 2018;4(eaaq0597):1–19.

    Google Scholar 

  87. Pluijm SMF, et al. Collagen type I a1 Sp1 polymorphism, osteoporosis, and intervertebral disc degeneration in older men and women. Ann Rheum Dis. 2004;63:71–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Mio F, et al. A functional polymorphism in COL11A1, which encodes the α1 chain of type XI collagen, is associated with susceptibility to lumbar disc herniation. Am J Hum Genet. 2007;81(6):1271–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Solovieva S, et al. Intervertebral disc degeneration in relation to the COL9A3 and the IL-1β gene polymorphisms. Eur Spine J. 2006;15:613–9.

    PubMed  Google Scholar 

  90. Solovieva S, et al. Interleukin 1 polymorphisms and intervertebral disc degeneration. Epidemiology. 2004;15(5):626–33.

    PubMed  Google Scholar 

  91. Sarath Babu N, Krishnan S, Brahmendra Swamy CV, Venkata Subbaiah GP, Gurava Reddy AV, Idris MM. Quantitative proteomic analysis of normal and degenerated human intervertebral disc. Spine J. 2016;16(8):989–1000.

    PubMed  Google Scholar 

  92. Collin EC, et al. Unique glycosignature for intervertebral disc and articular cartilage cells and tissues in immaturity and maturity. Sci Rep. 2016;6(23062):1–12.

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Science Foundation Ireland (SFI); the European Regional Development Fund (Grant Number 13/RC/2073); and CMNHS Scholarship, National University Ireland, Galway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Pandit.

Ethics declarations

Conflict of Interest

Isma Liza Mohd Isa, Büşra Günay, Kieran Joyce and Abhay Pandit each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Intervertebral Disk Degeneration and Regeneration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isa, I.L.M., Günay, B., Joyce, K. et al. Tissue Engineering: Biomaterials for Disc Repair. Curr Mol Bio Rep 4, 161–172 (2018). https://doi.org/10.1007/s40610-018-0106-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-018-0106-x

Keywords

Navigation