Skip to main content
Log in

Water remediation using mesoporous silica monolith nanocomposites functionalized with Prussian blue

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A simple, one-pot method was designed for preparing nanocomposite material and its potential applications for water remediation. X-ray diffraction, Fourier Transform infrared, scanning, and transmission electron microscopy, thermogravimetric analysis and derivative thermogravimetry, and N2 adsorption and desorption isotherm techniques were used to examine the chemical and physical characteristics of the prepared nanomaterials. The developed nano-sized sorbent has a good surface area of about 106.788 m2 g−1. The synthesized nanocomposite was employed as a sorbent to remove several heavy metals, such as Cd(II), Cu(II), Fe(III), Pb(II), Mn(II), and Cr(VI), and different pesticides (e.g., Diazinon, Parathion Methyl, Malathion, Parathion ethyl, Epoxide, DDE, Dieldrin, and Aldrin). The removal efficiencies were found to be in the range of 9.52–94.8%, 23.14–99.40%, and 8.91–85.50% for pesticides, heavy metals, and physical contaminants, respectively. In addition, the sorption capacities of the different metals ranged from 2.31 to 9.94 mg g−1, and from 2.67 to 28.00 mg g−1 for different pesticides. While it was 31.49–306.63 mg g−1 for physical contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Abukhadra MR et al (2022a) Insight into the adsorption properties of β-Cyclodextrin/zeolite: a structure for effective removal of Cd2+, PO43−, and methyl parathion; kinetics and advanced equilibrium studies. J Inorg Organomet Polym Mater 32(12):4664–4678

    Article  CAS  Google Scholar 

  • Abukhadra MR, Saad I, Othman SI, Katowah DF, Ajarem JS, Alqarni SA, Allam AA, Al Zoubi W et al (2022b) Characterization of Fe0@chitosan/cellulose structure as effective green adsorbent for methyl parathion, malachite green, and levofloxacin removal: experimental and theoretical studies. J Mol Liq 368:120730

    Article  CAS  Google Scholar 

  • Acar FN, Eren Z (2006) Removal of Cu(II) ions by activated poplar sawdust (Samsun clone) from aqueous solutions. J Hazard Mater 137(2):909–914

    Article  CAS  PubMed  Google Scholar 

  • Adekunle AS, Farah AM, Pillay J, Ozoemena KI, Mamba BB, Agboola BO (2012) Electrocatalytic properties of prussian blue nanoparticles supported on poly(m-aminobenzenesulphonic acid)-functionalised single-walled carbon nanotubes towards the detection of dopamine. Colloids and surfaces. B, Biointerfaces 95:186–194

    Article  CAS  PubMed  Google Scholar 

  • Agency, U.S.E.P. (2008) National primary drinking water regulations. US EPA, Office of Water

  • Agency, U.S.E.P. (2011) Source water assessment. US EPA, Office of Water

  • Ahmadian M, Anbia M (2021) Synthesis of spherical SBA-15 by poly (vinyl alcohol)/ Hydroxyl-terminated polybutadiene supermicelles as co-surfactant and its application for removal of diazinon from aqueous solution. Environ Technol Innov 24:101899

    Article  CAS  Google Scholar 

  • Alimohammadi V, Sedighi M, Jabbari E (2017) Experimental study on efficient removal of total iron from wastewater using magnetic-modified multi-walled carbon nanotubes. Ecol Eng 102:90–97

    Article  Google Scholar 

  • Alrefaee S et al (2023) Adsorption and effective removal of organophosphorus pesticides from aqueous solution via novel metal-organic framework: adsorption isotherms, kinetics, and optimization via Box–Behnken design. J Mol Liq. https://doi.org/10.1016/j.molliq.2023.122206

    Article  Google Scholar 

  • Alsulami QA, Hussein MA, Alsheheri SZ, Elshehy EA, El-Said WA (2022) Unexpected ultrafast and high adsorption performance of Ag(I) and Hg(II) ions from multiple aqueous solutions using microporous functional silica-polymer sponge-like composite. J Market Res 17:2000–2013

    CAS  Google Scholar 

  • Armaghan M, Amini MM (2017) Adsorption of diazinon and fenitrothion on nanocrystalline magnesium oxides. Arab J Chem 10(1):91–99

    Article  CAS  Google Scholar 

  • Azouaou N, Sadaoui Z, Djaafri A, Mokaddem H (2010) Adsorption of cadmium from aqueous solution onto untreated coffee grounds: equilibrium, kinetics and thermodynamics. J Hazard Mater 184:126–134

    Article  CAS  PubMed  Google Scholar 

  • Baharum NA, Nasir HM, Ishak MY, Isa NM, Hassan MA, Aris AZ (2020) Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell-modified biochar. Arab J Chem 13(7):6106–6121

    Article  CAS  Google Scholar 

  • Bakka A, Ait Taleb M, Nabil S, Laknifli A, Rachid M, Abdeljalil B, Bakiz B, Diane Y (2018) Patellidae shells waste as a biosorbent for the removal of aldrin pesticide from aqueous solutions. J Eng Sci Technol 13:925–942

    Google Scholar 

  • Bin Jusoh A, Cheng WH, Low WM, Nora’aini A, Noor MM (2005) Study on the removal of iron and manganese in groundwater by granular activated carbon. Desalination 182(1):347–353

    Article  CAS  Google Scholar 

  • Ching S, Mohd Suffian Y, Aziz H, Umar M (2011) Influence of impregnation ratio on coffee ground activated carbon as landfill leachate adsorbent for removal of total iron and orthophosphate. Desalination 279:225–234

    Article  CAS  Google Scholar 

  • Cui L, Zhu J, Meng X, Yin H, Pan X, Ai S (2012) Controlled chitosan coated Prussian blue nanoparticles with the mixture of graphene nanosheets and carbon nanoshperes as a redox mediator for the electrochemical oxidation of nitrite. Sens Actuators, B Chem 161:641–647

    Article  CAS  Google Scholar 

  • Dehghani MH et al (2021) Process optimization and enhancement of pesticide adsorption by porous adsorbents by regression analysis and parametric modelling. Sci Rep 11(1):11719

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • El Bakouri H, Usero J, Morillo J, Ouassini A (2009) Adsorptive features of acid-treated olive stones for drin pesticides: equilibrium, kinetic and thermodynamic modeling studies. Bioresour Technol 100(18):4147–4155

    Article  PubMed  Google Scholar 

  • El-Din AFT, El-Khouly ME, Elshehy EA, Atia AA, El-Said WA (2018) Cellulose acetate assisted synthesis of worm-shaped mesopores of MgP ion-exchanger for cesium ions removal from seawater. Micropor Mesopor Mater 265:211–218

    Article  Google Scholar 

  • El-Said WA, El-Khouly ME, Ali MH, Rashad RT, Elshehy EA, Al-Bogami AS (2018) Synthesis of mesoporous silica-polymer composite for the chloridazon pesticide removal from aqueous media. J Environ Chem Eng 6:2214–2221

    Article  CAS  Google Scholar 

  • Farah A, Thema F, Dikio E (2012a) Electrochemical detection of hydrogen peroxide based on graphene oxide/Prussian blue modified glassy carbon electrode. Int J Electrochem Sci 7:5069–5083

    Article  CAS  Google Scholar 

  • Farah A, Shooto ND, Thema FT, Modise JS, Dikio ED (2012b) Fabrication of prussian blue/multi-walled carbon nanotubes modified glassy carbon electrode for electrochemical detection of hydrogen peroxide. Int J Electrochem Sci 7:4302–4313

    Article  CAS  Google Scholar 

  • Farghali RA, Sobhi M, Gaber SE, Ibrahim H, Elshehy EA (2020) Adsorption of organochlorine pesticides on modified porous Al30/bentonite: kinetic and thermodynamic studies. Arab J Chem 13(8):6730–6740

    Article  CAS  Google Scholar 

  • Feng S, Li X, Ma F, Liu R, Guanglei Fu, Xing S, Yue X (2016) Prussian blue functionalized microcapsules for effective removal of Cesium in water environment. RSC Adv 6:34399–34410

    Article  ADS  CAS  Google Scholar 

  • Fialova K, Motlochova M, Cermakova L, Novotna K, Bacova J, Rousar T, Subrt J, Pivokonsky M (2023) Removal of manganese by adsorption onto newly synthesized TiO2-based adsorbent during drinking water treatment. Environ Technol 44(9):1322–1333

    Article  CAS  PubMed  Google Scholar 

  • Firozjaee T, Mehrdadi N, Baghdadi M, Nabi R (2017) The removal of diazinon from aqueous solution by chitosan/carbon nanotube adsorbent. Desalin Water Treat 79:291–300

    Article  CAS  Google Scholar 

  • Foo KY, Lee LK, Hameed BH (2013) Preparation of banana frond activated carbon by microwave induced activation for the removal of boron and total iron from landfill leachate. Chem Eng J 223:604–610

    Article  CAS  Google Scholar 

  • Gunasekara AS, Rubin AL, Goh KS, Spurlock FC, Tjeerdema RS (2008) Environmental fate and toxicology of carbaryl. Rev Environ Contam Toxicol 196:95–121

    CAS  PubMed  Google Scholar 

  • Gupta VK, Ali I (2001) Removal of DDD and DDE from wastewater using bagasse fly ash, a sugar industry waste. Water Res 35(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Haghighi B, Hamidi H, Gorton L (2010) Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode. Sens Actuators, B Chem 147:270–276

    Article  CAS  Google Scholar 

  • Hearon SE, Wang M, Phillips TD (2020) Strong adsorption of dieldrin by parent and processed montmorillonite clays. Environ Toxicol Chem 39(3):517–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang E, Pack SP, Kim I, Chung S (2020) A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles. Sci Rep 10:5558

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabwadza-Corner P et al (2014) Mechanism of diazinon adsorption on iron modified montmorillonite. Am J Anal Chem 5:70–76

    Article  CAS  Google Scholar 

  • Khalil TE, Elhusseiny AF, El-dissouky A, Ibrahim NM (2019) Functionalized chitosan nanocomposites for removal of toxic Cr (VI) from aqueous solution. React Funct Polym 146:104407

    Article  Google Scholar 

  • Kim J, Kang J, Um W (2022) Simultaneous removal of cesium and iodate using prussian blue functionalized CoCr layered double hydroxide (PB-LDH). J Environ Chem Eng 10:107477

    Article  CAS  Google Scholar 

  • Köse K, Köse DA (2017) Removal of DDE by exploiting the alcoho-phobic interactions. Environ Sci Pollut Res Int 24(10):9187–9193

    Article  PubMed  Google Scholar 

  • Kumar A, Xagoraraki, Pharmaceuticals I (2010) personal care products and endocrine-disrupting chemicals in U.S. surface and finished drinking waters: a proposed ranking system. Sci Total Environ 408:5972–5989

    Article  ADS  CAS  PubMed  Google Scholar 

  • Li ZF, Chen J, Wang L, Chen K, Nie L, Yao S (2007) Improved electrochemical properties of prussian blue by multi-walled carbon nanotubes. J Electroanal Chem 603:59–66

    Article  CAS  Google Scholar 

  • Lin L, Huang X, Wang L, Tang A (2010) Synthesis, characterization and the electrocatalytic application of prussian blue/titanate nanotubes nanocomposite. Solid State Sci 12(10):1764–1769

    Article  ADS  CAS  Google Scholar 

  • Liu H, Qu J, Dai R, Ru J, Wang Z (2007) A biomimetic absorbent for removal of trace level persistent organic pollutants from water. Environ Pollut 147(2):337–342

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Ru J, Qu J, Dai R, Wang Z, Hu C (2009) Removal of persistent organic pollutants from micro-polluted drinking water by triolein embedded absorbent. Biores Technol 100(12):2995–3002

    Article  CAS  Google Scholar 

  • Liu L, Luo X-B, Ding L, Luo S-L (2019) Application of nanotechnology in the removal of heavy metal from water. In: Luo X, Deng F (eds) Nanomaterials for the removal of pollutants and resource reutilization. Elsevier, pp 83–147

    Chapter  Google Scholar 

  • Long M, Jiang H, Li X (2021a) Biosorption of Cu2+, Pb2+, Cd2+ and their mixture from aqueous solutions by Michelia figo sawdust. Sci Rep 11:11527

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Long X, Chen H, Huang T, Zhang Y, Lu Y, Tan J, Chen R (2021b) Removal of Cd (II) from micro-polluted water by magnetic core-shell Fe3O4@ Prussian blue. Molecules 26(9):2497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López E, Soto B, Arias M, Núñez A, Rubinos D, Barral MT (1998) Adsorbent properties of red mud and its use for wastewater treatment. Water Res 32(4):1314–1322

    Article  Google Scholar 

  • Louis S, Proc. (1999) 1999 Conference on hazardous waste research. 121–130.

  • Lu LC, Wang CI, Sye WF (2011) Applications of chitosan beads and porous crab shell powder for the removal of 17 organochlorine pesticides (OCPs) in water solution. Carbohyd Polym 83(4):1984–1989

    Article  CAS  Google Scholar 

  • Mac Rae IC (1986) Removal of chlorinated hydrocarbons from water and wastewater by bacterial cells adsorbed to magnetite. Water Res 20(9):1149–1152

    Article  Google Scholar 

  • Melo DR, Lipsztein JL, de Oliveira CA, Bertelli L (1994) 137Cs internal contamination involving a Brazilian accident, and the efficacy of Prussian Blue treatment. Health Phys 66:245–252

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Chen J, Wu X, Miao J (2007) Preparation and characterization of hybrid platinum/Prussian blue nanoparticles. Coll Surfaces a: Physicochem Eng. Asp. 295:135–138

    Article  CAS  Google Scholar 

  • Moreira R, Madeira V, José H, Humeres E (2004) Removal of iron from water using adsorbent carbon. SSTEDS 39:271–285

    Google Scholar 

  • Naushad M, Alothman ZA, Khan MR (2013) Removal of malathion from aqueous solution using De-Acidite FF-IP resin and determination by UPLC–MS/MS: equilibrium, kinetics and thermodynamics studies. Talanta 115:15–23

    Article  CAS  PubMed  Google Scholar 

  • Niksirat M, Sadeghi R, Esmaili J (2019) Removal of Mn from aqueous solutions, by activated carbon obtained from tire residuals. SN Appl Sci 1(7):782

    Article  Google Scholar 

  • Nikzad S, Amooey AA, Alinejad-Mir A (2019) Adsorption of diazinon from aqueous solutions by magnetic guar gum-montmorillonite. Chem Data Collect 20:100187

    Article  CAS  Google Scholar 

  • Ong S-A, Toorisaka E, Hirata M, Hano T (2013) Comparative study on kinetic adsorption of Cu (II), Cd (II) and Ni (II) ions from aqueous solutions using activated sludge and dried sludge. Appl Water Sci 3:321–325

    Article  ADS  CAS  Google Scholar 

  • Padmavathy KS, Madhu G, Haseena PV (2016) A study on effects of pH, adsorbent dosage, time, initial concentration and adsorption isotherm study for the removal of hexavalent chromium (Cr (VI)) from wastewater by magnetite nanoparticles. Proced Technol 24:585–594

    Article  Google Scholar 

  • Pal OR, Vanjara AK (2001) Removal of malathion and butachlor from aqueous solution by clays and organoclays. Sep Purif Technol 24(1):167–172

    Article  CAS  Google Scholar 

  • Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946

    Article  CAS  PubMed  Google Scholar 

  • Rajic N, Stojakovic D, Jevtic S, Zabukovec Logar N, Kovac J, Kaucic V (2009) Removal of aqueous manganese using the natural zeolitic tuff from the Vranjska Banja deposit in Serbia. J Hazard Mater 172(2):1450–1457

    Article  CAS  PubMed  Google Scholar 

  • Ren T, He P, Niu W, Wu Y, Ai L, Gou X (2013) Synthesis of α-Fe2O3 nanofibers for applications in removal and recovery of Cr(VI) from wastewater. Environ Sci Pollut Res Int 20(1):155–162

    Article  CAS  PubMed  Google Scholar 

  • Rosales GG, Ávila-Pérez P, Reza-García JO, Cabral-Prieto A, Pérez-Gómez EO (2021) Nanoparticle beads of Chitosan-Ethylene Glycol Diglycidyl Ether/Fe for the removal of Aldrin. J Chem 2021:8421840

    Article  Google Scholar 

  • Ru J, Liu H, Qu J, Wang A, Dai R (2007) Removal of dieldrin from aqueous solution by a novel triolein-embedded composite adsorbent. J Hazard Mater 141:61–69

    Article  CAS  PubMed  Google Scholar 

  • Sabbagh N, Tahvildari K, Mehrdad Sharif AA (2021) Application of chitosan-alginate bio composite for adsorption of malathion from wastewater: characterization and response surface methodology. J Contam Hydrol 242:103868

    Article  CAS  PubMed  Google Scholar 

  • Salimi AH, Shamshiri A, Jaberi E, Bonakdari H, Akhbari A, Delatolla R, Hassanvand MR, Agharazi M et al (2022) Total iron removal from aqueous solution by using modified clinoptilolite. Ain Shams Eng J 13(1):101495

    Article  Google Scholar 

  • Sanad MMS, Gaber S, El-Aswer E, Farahat M (2023) Graphene-magnetite functionalized diatomite for efficient removal of organochlorine pesticides from aquatic environment. J Environ Manage 330:117145

    Article  CAS  PubMed  Google Scholar 

  • Sawicki R, Mercier L (2006) Evaluation of mesoporous cyclodextrin-silica nanocomposites for the removal of pesticides from aqueous media. Environ Sci Technol 40(6):1978–1983

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sciban M, Klasnja M, Skrbic B (2008) Adsorption of copper ions from water by modified agricultural by-products. Desalination 229:170–180

    Article  CAS  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sheikhi ZN, Khajeh M, Oveisi AR, Bohlooli M (2021) Functionalization of an iron-porphyrinic metal–organic framework with Bovine serum albumin for effective removal of organophosphate insecticides. J Mol Liq 343:116974

    Article  CAS  Google Scholar 

  • Shokati Poursani A, Nilchi A, Hassani AH, Shariat M, Nouri J (2015) A novel method for synthesis of nano-γ-Al2O3: study of adsorption behavior of chromium, nickel, cadmium and lead ions. Int J Environ Sci Technol 12(6):2003–2014

    Article  CAS  Google Scholar 

  • Shrivas K, Ghosale A, Nirmalkar N, Srivastava A, Singh SK, Shinde SS (2017) Removal of endrin and dieldrin isomeric pesticides through stereoselective adsorption behavior on the graphene oxide-magnetic nanoparticles. Environ Sci Pollut Res Int 24(32):24980–24988

    Article  CAS  PubMed  Google Scholar 

  • Sprynskyy M, Ligor T, Buszewski B (2008) Clinoptilolite in study of lindane and aldrin sorption processes from water solution. J Hazard Mater 151:570–577

    Article  CAS  PubMed  Google Scholar 

  • Survey, U.S.G. (2010) Source water-quality assessment (SWQA) program.

  • Üçer A, Uyanik A, Aygün ŞF (2006) Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Sep Purif Technol 47(3):113–118

    Article  Google Scholar 

  • Uogintė I, Lujanienė G, Mažeika K (2019a) Study of Cu (II), Co (II), Ni (II) and Pb (II) removal from aqueous solutions using magnetic Prussian blue nano-sorbent. J Hazard Mater 369:226–235

    Article  PubMed  Google Scholar 

  • Uogintė I, Lujanienė G, Valiulis D (2019) Removal of heavy metals from contaminated water using nano-magnetic Prussian blue based on graphene oxide sorbent. 52(18): pp 85-88.

  • Víctor-Ortega MD, Ochando-Pulido JM, Martínez-Ferez A (2016) Iron removal and reuse from Fenton-like pretreated olive mill wastewater with novel strong-acid cation exchange resin fixed-bed column. J Ind Eng Chem 36:298–305

    Article  Google Scholar 

  • Weng C-H, Tsai C-Z, Chu S-H, Sharma YC (2007) Adsorption characteristics of copper (II) onto spent activated clay. Sep Purif Technol 54(2):187–197

    Article  CAS  Google Scholar 

  • Xu D, Zhu K, Zheng X, Xiao R (2015) Poly(ethylene-co-vinyl alcohol) functional nanofiber membranes for the removal of Cr(VI) from water. Ind Eng Chem Res 54:6836–6844

    Article  CAS  Google Scholar 

  • Yousif AM, Atia AA, Zaid OF, Ibrahim IA (2015) efficient and fast adsorption of phosphates and sulphates on prepared modified cellulose. J Dispersion Sci Technol 36:1628–1638

    Article  CAS  Google Scholar 

  • Zadeh M, Daghbandan A, Souraki B (2022) Removal of iron and manganese from groundwater sources using nano-biosorbents. Chem Biol Technol Agric 9:1–14

    Google Scholar 

  • Zhang Y, Wen Y, Liu Y, Li D, Li J (2004) Functionalization of single-walled carbon nanotubes with Prussian blue. Electrochem Commun 6(11):1180–1184

    Article  CAS  Google Scholar 

  • Zhang J, Li J, Yang F, Zhang B, Yang X (2009) Preparation of Prussian blue@Pt nanoparticles/carbon nanotubes composite material for efficient determination of H2O2. Sens Actuators, B Chem 143:373–380

    Article  Google Scholar 

  • Zhou Y-F, Haynes R (2011) Removal of Pb(II), Cr(III) and Cr(VI) from aqueous solutions using alum-derived water treatment sludge. Water Air Soil Pollut 215:631–643

    Article  ADS  CAS  Google Scholar 

  • Zhu W, Wang J, Wu D, Li X, Luo Y, Han C, Ma W, He S (2017) Investigating the heavy metal adsorption of mesoporous silica materials prepared by microwave synthesis. Nanoscale Res Lett 12(1):323

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Analytical Chemistry Unit (ACAL) for the use of all equipment throughout this work.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

WAES, AAM, and NAEM contributed to conceptualization and supervision; KA, WAES, AAM, and NAEM contributed to methodology; KA, AAM, and WAES contributed to software, data curation, writing—original draft preparation. Writing—revised form, KA, WAES, AAM, and NAEM. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to W. A. El-Said.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Editorial responsibility: Q. Aguilar-Virgen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markeb, A.A., Abdelhameed, K., El-Said, W.A. et al. Water remediation using mesoporous silica monolith nanocomposites functionalized with Prussian blue. Int. J. Environ. Sci. Technol. (2024). https://doi.org/10.1007/s13762-024-05506-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13762-024-05506-x

Keywords

Navigation