Skip to main content
Log in

Hexavalent chromium accumulation kinetics and physiological responses exhibited by Eichhornia sp. and Pistia sp.

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

In the present study, hexavalent chromium (5, 10 and 30 mg/L) phytoaccumulation by two free floating macrophytes, Eichhornia sp. and Pistia sp., was investigated in a greenhouse. The results revealed higher accumulation of chromium by Eichhornia sp. at 30 mg/L Cr solution. However, Pistia sp. showed highest accumulation at intermediate chromium solution of 10 mg/L. Pigment data indicated higher reduction of chlorophyll for Pistia sp. compared to Eichhornia sp. Both the tested species showed gradual reduction of both chlorophyll-a and chlorophyll-b significantly with increasing metal concentration from 5 to 30 mg/L. However, chlorophyll stability index data indicated higher chlorophyll stability index at higher Cr concentrations in case of both the macrophytes. On the other hand, lipid peroxidation in the form of malondialdehyde concentration was observed to increase with increase in chromium load for both the tested species. Almost similar results were recorded in the enzyme analysis data. Study results revealed that all the studied enzymes are highly sensitive toward chromium. However, catalase activity showed the highest sensitivity. Chromium bioaccumulation kinetics study revealed that only Pistia sp. is more suited with pseudo-first-order (0.910) and pseudo-second-order (0.665) kinetics equation compared to Eichhornia sp. New root development was observed only for Eichhornia sp. during the third day of incubation. The wet biomass of both the macrophytes showed gradual reduction in chromium solutions of increasing concentrations. Therefore, it may be concluded that Eichhornia sp. and Pistia sp. may be effectively used in remediation of Cr(VI) contaminated aquatic bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CSI:

Chlorophyll stability index

Chl:

Chlorophyll

ROS:

Reactive oxygen species

CAT:

Catalase

POD:

Peroxidase

AAO:

Ascorbic acid oxidase

MDA:

Malondialdehyde

TCA:

Trichloroacetic acid

ROS:

Reactive oxygen species

LED:

Light emitting diodes

TBA:

Thiobarbituric acid

AAS:

Atomic absorption spectrometry

DW:

Dry weight

FW:

Fresh weight

RGR:

Relative growth rate

EC:

Enzyme commission

ANOVA:

Analysis of variance

DMRT:

Duncan’s multiple range test

References

  • Aldoobie NF, Beltagi MS (2013) Physiological, biochemical and molecular responses of common bean (Phaseolus vulgaris L.) plants to heavy metals stress. Afr J Biotechnol 12:4614–4622

    CAS  Google Scholar 

  • Amin R, Edraki M, Mulligan DR, Gultom TH (2015) Chromium and nickel accumulation in the macrophytes of the Kawasi wetland on Island, North Maluku Province, Indonesia. Aust J Bot 63(7):549–553

    CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplast. Polyphenol oxidase in beta vulgaris. Plant Physiol 24:1–15

    CAS  Google Scholar 

  • Bajpai R, Preti DK (2012) Accumulation of toxic effect of arsenic and other heavy metals in acontaminated area of West Bengal, India, in the lichane Pyxinecocees (Sw.) NY1. Ecotoxicol Environ Saf 83:63–70

    CAS  Google Scholar 

  • Begum MK, Alam MR, Islam MS, Arefin MS (2012) Effect of water stress on physiological characters and juice quality of sugarcane. Sugar Tech 14(2):161–167

    CAS  Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Phytoremediation toxic met using plants to clean up environ, pp 71–88

  • Bishnoi NR, Dua A, Gupta VK, Sawhney SK (1993) Effect of chromium on seed germination, seedling growth and yield of peas. Agric Ecosyst Environ 47:47–57

    CAS  Google Scholar 

  • Cedergreen N, Streibig JC, Kudsk P, Mathiassen SK, Duke SO (2007) The occurrence of hormesis in plants and algae. Dose-response 5:150–162

    CAS  Google Scholar 

  • Chen NC, Kanazawa S, Horiguchi T, Chen NC (2001) Effect of chromium on some enzyme activities in the wheat rhizosphere. Soil Microorg 55:3–10

    Google Scholar 

  • Chen J, Shafi M, Li S, Wang Y, Wu J, Ye Z et al (2015) Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens). Sci Rep 5:13554

    Google Scholar 

  • Clijsters H, Van Assche F (1985) Inhibition of photosynthesis by heavy metals. Photosynth Res 7:31–40

    CAS  Google Scholar 

  • Dalo E, Sadikaj R, Sahiti H (2019) Assessment of accumulation of heavy metals and lipid peroxidation in common reed (Phragmites australis) in the Albanian Part of Lake Ohrid. J Ecol Eng 20(4):114–120. https://doi.org/10.12911/22998993/102795

    Article  Google Scholar 

  • Dey U, Mondal NK (2016) Ultrastructural deformation of plant cell under heavy metal stress in Gram seedlings. Cogent Environ Sci 2:1196472

    Google Scholar 

  • Dhal B, Thatoi H, Das N, Pandey B (2013) Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. J Hazard Mater 250:272–291

    Google Scholar 

  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Safety 106:164–172

    CAS  Google Scholar 

  • Espinoza-Quiñones FR, Módenes AN, Thomé LP, Palácio SM, Trigueros DEG, Oliveira AP, Szymanski N (2009) Study of the bioaccumulation kinetic of lead by living aquatic macrophyte Salvinia auriculata. Chem Eng J 150(2–3):316–322

    Google Scholar 

  • Fan Y, Zhu T, Li M, He J, Huang R (2017) Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in central China. J Healthc Eng 2017:4124302. https://doi.org/10.1155/2017/4124302

    Article  Google Scholar 

  • Fariasa DR, Hurdb CL, Eriksenc RS, Macleod CK (2018) Macrophytes as bioindicators of heavy metal pollution in estuarine and coastal environments. Mar Pollut Bull 128:175–184

    Google Scholar 

  • Gil-Cardeza ML, Ferri A, Cornejo P, Gomez E (2014) Distribution of chromium species in a Cr-polluted soil: presence of Cr(III) in glomalin related protein fraction. Sci Total Environ 493:828–833

    CAS  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agriculture research, 2nd edn. Wiley, New York

    Google Scholar 

  • Goswami S, Das S (2016) Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance. Ecotoxicol Environ Saf 126:211–218

    CAS  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Int 10(1):230–242

    Google Scholar 

  • Hassanein RA, Hashem HA, Khalil RR (2012) Stigmasterol treatment increases salt stress tolerance of faba bean plants by enhancing antioxidant systems. Plant Osmics J 5:476–485

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    CAS  Google Scholar 

  • Hibiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali B (2015) EDTA enhanced plant growth, antioxidant defence system and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res Int 22:1534–1544

    Google Scholar 

  • ISO 20079 (2004) Water quality—determination of the toxic effect of water constituents and waste water to duckweed (Lemna minor)—duckweed growth inhibition test. International Standard ISO 20079, Geneva

  • Jarvis TA, Bielmyer-Fraser GK (2015) Accumulation and effects of metal mixtures in two seaweed species. Comp Biochem Physiol Part C 171:28–33

    CAS  Google Scholar 

  • Kamal M, Ghaly AE, Mahmoud N, Côté R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039. https://doi.org/10.1016/S0160-4120(03)00091-6

    Article  CAS  Google Scholar 

  • Keller C, Rizwan M, Davidian JC, Pokrovsky OS, Bovet N, Chaurand P, Meunier JD (2015) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics under Cu stress. Planta 241:847–860

    CAS  Google Scholar 

  • Kontoghiorghe C, Kolnagou A, Kontoghiorghes GJ (2015) Phytochelators intended for clinical use in iron overload, other diseases of iron imbalance and free radical pathology. Molecules 20(11):20841–20872. https://doi.org/10.3390/molecules201119725

    Article  CAS  Google Scholar 

  • Kota J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107(3):263–283. https://doi.org/10.1016/S0269-7491(99)00168-2

    Article  Google Scholar 

  • Lin L, Chen F, Wang J, Liao M, Lv X, Wang Z, Li H, Deng Q, Xia H, Liang D, Yi Tang, Wang X, Lai Y, Ren W (2018) Effects of living hyperaccumulator plants and their straws on the growth and cadmium accumulation of Cyphomandra betacea seedlings. Ecotoxicol Environ Saf 155:109–116

    CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Malar S, Sahi SV, Favas PJC, Venkatachalam P (2015) Assessment of mercury heavy metal toxicity-induced physiochemical and molecular changes in Sesbania grandiflora L. Int J Environ Sci Technol 12:3273–3282

    CAS  Google Scholar 

  • Malik B, Pirzadah TB, Tahir I, Rehman RU (2019) Growth and physiological responses in chicory towards mercury induced in vitro oxidative stress. Plant Physiol Rep. https://doi.org/10.1007/s40502-019-00442-2

    Article  Google Scholar 

  • Medda S, Mondal NK (2017) Chromium toxicity and ultrastructural deformation of Cicer arietinum with special reference of root elongation and coleoptile growth. Ann Agrar Sci 15(3):396–401

    Google Scholar 

  • Meers E, Van-Slycken S, Adria-Ensen K, Ruttens A, Vangrons-Veld J, Witters G, Thewys N, Tack TF (2010) The use of bioenergy crops (Zea mays) for phytoattenuation of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78(1):35–41

    CAS  Google Scholar 

  • Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 34(1):1–32. https://doi.org/10.1080/10590501.2015.1096883

    Article  CAS  Google Scholar 

  • Mishra VK, Tripathi BD (2009) Accumulation of chromium and zinc from aqueous solutions using water hyacinth. J Hazard Mater 164:1059–1063

    CAS  Google Scholar 

  • Mondal NK, Das C, Roy S, Datta JK, Banerjee A (2013) Effect of varying cadmium stress on chickpea (Cicer arietinum L) seedlings: an ultrastructural study. Ann Environ Sci 7:59–70

    CAS  Google Scholar 

  • Mondal NK, Bhaumik R, Dey U, Pal KC, Das C, Datta JK (2014) Flouride remediation using floating macrophytes. Commun Plant Sci 4:23–33

    Google Scholar 

  • Mondal NK, Das C, Datta JK (2015) Effect of mercury on seedling growth, nodulation and ultrastructural deformation of Vigna radiata (L) Wilczek. Environ Monitor Assess 187(5):1–14

    CAS  Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek JS, Paramasivan T, Naushad Mu, Prakashmaran JV, Gayathri V, Omar K, Duaij A (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett 16:1339–1359. https://doi.org/10.1007/s10311-018-0762-3

    Article  CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230. https://doi.org/10.1016/j.copbio.2004.04.006

    Article  CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    CAS  Google Scholar 

  • Panda SK, Patra HK (2000) Does Cr III produces oxidative damage excised wheat leaves. J Plant Biol 27(2):105–110

    Google Scholar 

  • Panse VG, Sukhatme PV (1967) Statistical methods for agricultural workers. ICAR, New Delhi, pp 97–123

    Google Scholar 

  • Pirson A, Seidel F (1950) Cell metabolism and physiology in Lemna minor root deprived of potassium and calcium, in German (Zell- und stoffwechselphysiologiche Untersuchungen an der Wurzel von Lemna minor unter besonderer Berücksichtigung von Kaliumund Calciummangel). Planta 38:431–473

    CAS  Google Scholar 

  • Plata JS, Villasante CO, Flores-Caceres ML, Escobar C, del Campo FF, Hernandez LE (2009) Differential alterations of antioxidant defenses as bio-indicators of mercury and cadmium toxicity in Alfalfa. Chemosphere 77:946–954

    Google Scholar 

  • Prasad MNV, Malec P, Waloszek A, Bojko M, Strzalka K (2001) Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 161:881–889

    CAS  Google Scholar 

  • Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83(5):633–646. https://doi.org/10.1016/j.chemosphere.2011.02.045

    Article  CAS  Google Scholar 

  • Reznia S, Taib SM, Md Dim MF, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazards Mater 318:587–599

    Google Scholar 

  • Rizwan M, Meunier JD, Davidian JC, Pokrovsky OS, Bovet N, Keller C (2015) Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics. Environ Sci Pollut Res 23:1414–1427. https://doi.org/10.1007/s11356-015-5351-4

    Article  CAS  Google Scholar 

  • RoyChowdhury A, Sarkar D, Deng Y, Datta R (2017) Assessment of soil and water contamination at the tab-simco coal mine: a case study. Mine Water Environ 36:248–254. https://doi.org/10.1007/s10230-016-0401-9

    Article  CAS  Google Scholar 

  • Rusina Y, Kaloyan N, Christov L, Petrova P (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot 51:93–101

    Google Scholar 

  • Saddiqe Z, Farooq A, Khan F et al (2015) Effect of Chromium(VI) on physical growth and biochemical parameters of Wheat (Triticum aestivum L.) seedlings. Biologia (Pakistan) 61(2):219–226

    Google Scholar 

  • Sagar S, Dwivedi A, Yadav S, Tripathi M, Kaistha SD (2012) Hexavalent chromium reduction and plant growth promotion by Staphylococcus arlettae Strain Cr11. Chemosphere 86(8):847–852

    CAS  Google Scholar 

  • Sairam RK, Deshmukh PS, Shukla DS (2008) Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. J Agronomy Crop Sci 178(3):171–178

    Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaq W, Kamran A, Matloob A, Rehimb A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    CAS  Google Scholar 

  • Shahid ML, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1–44

    CAS  Google Scholar 

  • Shanker AK (2003) Physiological, biochemical and molecular aspects of chromium toxicity and tolerance in selected crops and tree species. Ph.D. Thesis, Tamil Nadu Agricultural University, Coimbatore

  • Shanker AK, Cervantes C, Lozatavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753. https://doi.org/10.1016/j.envint.2005.02.003

    Article  CAS  Google Scholar 

  • Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox balance. Trends Plant Sci 14:43–50

    CAS  Google Scholar 

  • Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetland: a critical review. Miner Eng 19(2):105–116

    CAS  Google Scholar 

  • Shimada Y, Ko S (2008) Ascorbic acid and Ascorbic acid oxidase in vegetables. Chugokuen J 7:7–10

    Google Scholar 

  • Singh NK, Raghubanshi AS, Upadhyay AK, Rai UN (2016) Arsenic and other heavy metal accumulation in plants and algae growing naturally in contaminated area of West Bengal, India. Ecotoxicol Environ Safety 130:224–233

    CAS  Google Scholar 

  • Singh H, Verma A, Kumar M, Sharma R, Gupta R, Kaur M, Negi M, Sharma SK (2017) Phytoremediation: a green technology to clean up the sites with low and moderate level of heavy metals. Austin Biochem 2(2):1012

    Google Scholar 

  • Suseela MR, Sinha S, Singh S, Saxena R (2002) Accumulation of chromium and scanning electron microscopic studies in Scirpus lacustris L. treated with metal and tannery effluent. Bull Environ Contam Toxicol 68:540–548

    CAS  Google Scholar 

  • Swarnalatha K, Radhakrishnan B (2015) Studies on removal of Zinc and Chromium from aqueous solutions using water Hyacinth. Pollution 1:193–202

    Google Scholar 

  • Tang SR, Wilke BM, Brooks RR, Tang SR (2001) Heavy-metal uptake by Metal tolerant Elsholtzia haichinesis and Commelina communis from China. Commun Soil Sci Plant Anal 32(5–6):895–905

    CAS  Google Scholar 

  • Tauqeer HM, Ali S, Rizwan M, Ali Q, Saed R, Iftikhar U, Ahmad R, Farid M, Abbasi GH (2016) Phytoextraction of heavy metals by Alternanthera beltzickiana: growth and physiological response. Ecotoxicol Environ Saf 126:138–146

    CAS  Google Scholar 

  • Thijs S, Sillen W, Weyens N, Vangronsveld J (2017) Phytoremediation: state-of-the-art and a key role for the plant microbiome in future trends and research prospects. Int J Phytoremediation 19(1):23–38

    CAS  Google Scholar 

  • Tiwari S, Arya A, Kumar S (2012) Standardizing sterilization protocol and establishment of callus culture of sugarcane for enhanced plant regeneration in vitro. Res J Bot 7(1):1–7

    CAS  Google Scholar 

  • Torok B, Dransfield T (2017) Green chemistry: an inclusive approach, 1st edn. Elsevier, Amsterdam, pp 359–373. https://doi.org/10.1016/B978-0-12-809270-5.00015-7

    Book  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land: a review. Environ Chem Lett 8(1):1–17

    CAS  Google Scholar 

  • Vecchia FD, Larocca N, Moro I, Defaveri S, Andreoli C, Rascio N (2005) Morphogenetic, ultra structural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci 168:329–338

    Google Scholar 

  • Vesely T, Tlustoˇs P, Száková J (2011) The use of water lettuce (Pistia stratiotes L.) for rhizofiltration of a highly polluted solution by cadmium and lead. Int J Phytoremediation 13:859–872

    CAS  Google Scholar 

  • Wang L, Lina H, Dong Y, He Y (2018) Effects of cropping patterns of four plants on the phytoremediation of vanadium-containing synthetic wastewater. Ecotoxicol Environ Saf 115:27–34

    Google Scholar 

  • Yabanli M, Yozukmaz A, Sel F (2014) Heavy metal accumulation in the leaves, stem and root of the invasive submerged macrophyte Myriophyllum spicatum L. (Haloragaceae): an example of Kadin Creek (Mugla, Turkey). Braz Arch Biol Technol 57:434–440

    CAS  Google Scholar 

  • Yang J, Cao J, Xing G, Yuau H (2015) Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and Zinc by Oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour Technol 175:537–544

    CAS  Google Scholar 

  • Zayed A, Pilon-Smits E, de Souza M et al (2000) Remediation of selenium polluted soils and waters by phytovolatilization. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Pr, Boca Raton, FL, pp 61–83

    Google Scholar 

  • Zeid I-M (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol Plant 44:111–115

    CAS  Google Scholar 

  • Zhang XZ (1992) The measurement and mechanism of lipid peroxidation and SOD, POD and CAT activities in biological system. In: Zhang XZ (ed) Research methodology of crop physiology. Agriculture Press, Beijing, pp 208–211

    Google Scholar 

  • Zhou GJ, Peng FQ, Zhaug LJ, Ying GG (2012) Biosorption of zinc and copper from aqueous solutions by two freshwater green microalgae Chlorella pyrenoidosa and Scemedesmus obliquels. Environ Sci Pollut Res 19(7):2918–2929

    CAS  Google Scholar 

Download references

Acknowledgement

The authors are thankful to all faculty members and non-teaching staff of the Department of Environmental Science, University of Burdwan, West Bengal, India, for providing infrastructural facilities and active moral support toward completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Mondal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article is original and contains unpublished material. The corresponding author confirms that all of the other authors have read and approved the manuscript and no ethical issues involved.

Additional information

Editorial responsibility: Abhishek RoyChowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, N.K., Nayek, P. Hexavalent chromium accumulation kinetics and physiological responses exhibited by Eichhornia sp. and Pistia sp.. Int. J. Environ. Sci. Technol. 17, 1397–1410 (2020). https://doi.org/10.1007/s13762-019-02418-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-019-02418-z

Keywords

Navigation