Skip to main content
Log in

Comparative Study of Chromium Phytoremediation by Two Aquatic Macrophytes

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Chromium (Cr) occurs in several oxidation states from trivalent to hexavalent. However, hexavalent forms are more toxic and mainly produced by anthropogenic activities. A hydroponic experiment was conducted to analyse the comparative remediation of Cr by Marsilea minuta and Pistia stratiotes. Plants were exposed to four concentrations of Cr (0.5, 1.0, 1.5, and 2.0 mM) for 3 days. The highest accumulation of Cr was seen at the 1.5 mM concentration after 3 days in Marsilea (11.96 mg/g) and Pistia (18.78 mg/g). Dry weights decreased and malondialdehyde (MDA) levels increased in response to increasing Cr concentrations. Results indicate that both macrophytes are suitable candidates for Cr phytoremediation. Antioxidant-enzyme activity as a function of metal tolerance is imperative for a coherent understanding of plant physiology under metal stress.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akter S, Afrin R, Mia MY, Hossen MZ (2014) Phytoremediation of chromium (cr) from tannery effluent by using water lettuce (Pistia stratiotes). ASA Univ Rev 8(2):149–156

  • Alvarez CC, Gómez MEB, Zavala AH (2021) Hexavalent chromium: regulation and health effects. J Trace Elem Med Biol 65:126729

    CAS  Google Scholar 

  • Anjum SA, Ashraf U, Imran KHAN, Tanveer M, Shahid M, Shakoor A, Longchang WANG (2017) Phyto-toxicity of chromium in maize: oxidative damage, osmolyte accumulation, anti-oxidative defense and chromium uptake. Pedosphere 27(2):262–273

    CAS  Google Scholar 

  • Ansari AA, Naeem M, Gill SS, AlZuaibr FM (2020) Phytoremediation of contaminated waters: an eco-friendly technology based on aquatic macrophytes application. Egypt J Aquat Res 46(4):371–376

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    CAS  Google Scholar 

  • Avudainayagam S, Megharaj M, Owens G, Kookana RS, Chittleborough D, Naidu R (2003) Chemistry of chromium in soils with emphasis on tannery waste sites. Rev Environ Contam Toxicol 178:53–91

    CAS  Google Scholar 

  • Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2009) Uncommon heavy metals, metalloids and their plant toxicity: a review. In: Lichtfouse E (ed) Organic Farming, Pest Control and Remediation of Soil Pollutants. Springer, Dordrecht

    Google Scholar 

  • Becquer T, Quantin C, Sicot M, Boudot JP (2003) Chromium availability in ultramafic soils from New Caledonia. Sci Total Environ 301(1–3):251–261

    CAS  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25(3):335–347

    CAS  Google Scholar 

  • Dan P, Mandal S, De A, Mandal S (2016) Studies on the toxicity of chromium (VI) to Pistia stratiotes L. plant and its removal. Int J Curr Microbiol Appl Sci 5(6):975–982

    CAS  Google Scholar 

  • Das K, Mandal C, Ghosh N, Dey N, Adak MK (2013) Cadmium accumulation in Marsilea minuta Linn. And its antioxidative responses. Am J Plant Sci 4:365–371

    Google Scholar 

  • Das S, Das A, Mazumder PET, Paul R, Das S (2021) Lead phytoremediation potentials of four aquatic macrophytes under hydroponic cultivation. Int J Phytoremediation 23(12):1279–1288

    CAS  Google Scholar 

  • Dhir B, Sharmila P, Saradhi PP (2009) Potential of aquatic macrophytes for removing contaminants from the environment. Crit Rev Environ Sci Technol 39(9):754–781

    CAS  Google Scholar 

  • Duxbury AC, Yentsch CS (1956) Plankton pigment nomographs. J. Mar. Res 15:91–100

  • Fletcher J, Willby N, Oliver DM, Quilliam RS (2020) Phytoremediation using aquatic plants. In: Shmaefsky BR (ed) Phytoremediation. Springer, Cham, pp 205–260

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    CAS  Google Scholar 

  • Giripunje MD, Fulke AB, Meshram PU (2015) Remediation techniques for heavy-metals contamination in lakes: a mini‐review. CLEAN–Soil Air Water 43(9):1350–1354

    CAS  Google Scholar 

  • Hayat S, Khalique G, Irfan M, Wani AS, Tripathi BN, Ahmad A (2012) Physiological changes induced by chromium stress in plants: an overview. Protoplasma 249(3):599–611

    CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    CAS  Google Scholar 

  • Hemeda HM, Klein BP (1990) Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. J Food Sci 55(1):184–185

    CAS  Google Scholar 

  • Huffman EW Jr, Allaway WH (1973) Chromium in plants. Distribution in tissues, organelles, and extracts and availability of bean leaf chromium to animals. J Agric Food Chem 21(6):982–986

    Google Scholar 

  • Kaur M, Kumar M, Sachdeva S, Puri SK (2018) Aquatic weeds as the next generation feedstock for sustainable bioenergy production. Bioresour Technol 251:390–402

    CAS  Google Scholar 

  • Khellaf N, Djelal H, Amrane A (2022) An overview of the valorization of aquatic plants in effluent depuration through phytoremediation processes. Appl Microbiol 2(2):309–318

    Google Scholar 

  • Kumar N, Bauddh K, Dwivedi N, Barman SC, Singh DP (2012) Accumulation of metals in selected macrophytes grown in mixture of drain water and tannery effluent and their phytoremediation potential. J Environ Biol 33(5):923

    CAS  Google Scholar 

  • Kumari A, Lal B, Rai UN (2015) Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India. Int J Phytoremediation 18(6):592–597

    Google Scholar 

  • Manorama Thampatti KC, Beena VI, Meera AV, Ajayan AS (2020) Phytoremediation of metals by aquatic macrophytes. In: Shmaefsky BR (ed) Phytoremediation. Springer, Cham, pp 153–204

    Google Scholar 

  • Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99(15):7091–7097

    CAS  Google Scholar 

  • Mondal NK, Nayek P (2020) Hexavalent chromium accumulation kinetics and physiological responses exhibited by Eichhornia sp. and Pistia sp. Int J Environ Sci Technol 17:1397–1410

    CAS  Google Scholar 

  • Newete SW, Byrne MJ (2016) The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth. Environ Sci Pollut Res 23:10630–10643

    CAS  Google Scholar 

  • Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46(2):849–854

    CAS  Google Scholar 

  • Oláh V, Lakatos G, Bertók C, Kanalas P, Szőllősi E, Kis J, Mészáros I (2010) Short-term chromium (VI) stress induces different photosynthetic responses in two duckweed species, Lemna gibba L. and Lemna minor L. Photosynthetica 48:513–520

    Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102

    CAS  Google Scholar 

  • Prado C, Ponce SC, Pagano E, Prado FE, Rosa M (2016) Differential physiological responses of two Salvinia species to hexavalent chromium at a glance. Aquat Toxicol 175:213–221

    CAS  Google Scholar 

  • Reale L, Tedeschini E, Rondoni G, Ricci C, Bin F, Frenguelli G, Ferranti F (2016) Histological investigation on gall development induced by a worldwide invasive pest, Dryocosmus kuriphilus, on Castanea sativa. Plant Biosystems – Int J Dealing Asp Plant Biol 150(1):35–42

    Google Scholar 

  • Romero-Hernández JA, Amaya-Chávez A, Balderas-Hernández P, Roa-Morales G, González-Rivas N, Balderas-Plata M (2017) Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, hg, and zn) by four aquatic macrophytes. Int J Phytoremediation 19(3):239–245

    Google Scholar 

  • Saraswat S, Rai DJ (2018) Aquatic macrophytes mediated remediation of toxic metals from moderately contaminated industrial effluent. Int J Phytoremediation 20(9):876–884

    CAS  Google Scholar 

  • Sasmaz A, Yaman M (2006) Distribution of chromium, nickel and cobalt in different parts of plant species and soil in mining area of Keban, Turkey. Commun Soil Sci Plant Anal 37(13–14):1945–1857

    Google Scholar 

  • Sasmaz A, Dogan I, Sasmaz M (2016) Removal of Cr, Ni and Co in the water of chromium mining areas by using Lemna gibba L. and Lemna minor L. Water Environ J 30(3–4):235–242

    CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5):739–753

    CAS  Google Scholar 

  • Shanker AK, Djanaguiraman M, Venkateswarlu B (2009) Chromium interactions in plants: current status and future strategies. Metallomics 1(5):375–383

    CAS  Google Scholar 

  • Sharma A, Kapoor D, Wang J, Shahzad B, Kumar V, Bali AS, Yan D (2020) Chromium bioaccumulation and its impacts on plants: an overview. Plants 9(1):100

    CAS  Google Scholar 

  • Shrivastava R, Upreti RK, Seth PK, Chaturvedi UC (2002) Effects of chromium on the immune system. FEMS Immunol Med Microbiol 34(1):1–7

    CAS  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11(3):229–254

    CAS  Google Scholar 

  • Sinha S, Saxena R, Singh S (2005) Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58(5):595–604

    CAS  Google Scholar 

  • Sinha S, Basant A, Malik A, Singh KP (2009) Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L. Ecotoxicology 18:555–566

    CAS  Google Scholar 

  • Srivastava D, Tiwari M, Dutta P, Singh P, Chawda K, Kumari M, Chakrabarty D (2021) Chromium stress in plants: toxicity, tolerance and phytoremediation. Sustainability 13(9):4629

    CAS  Google Scholar 

  • Tabinda AB, Arif RA, Yasar A, Baqir M, Rasheed R, Mahmood A, Iqbal A (2019) Treatment of textile effluents with Pistia stratiotes, Eichhornia crassipes and Oedogonium sp. Int J Phytoremediation 21(10):939–943

    CAS  Google Scholar 

  • Vernay P, Gauthier-Moussard C, Hitmi A (2007) Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Lolium perenne L. Chemosphere 68(8):1563–1575

    CAS  Google Scholar 

  • Vimercati L, Gatti MF, Gagliardi T, Cuccaro F, De Maria L, Caputi A, Baldassarre A (2017) Environmental exposure to arsenic and chromium in an industrial area. Environ Sci Pollut Res 24:11528–11535

    CAS  Google Scholar 

  • Wilbur S, Abadin H, Fay M, Yu D, Tencza B, Ingerman L, Klotzbach J, James S (2012) Health effects. In Toxicological Profile for Chromium. Agency for Toxic Substances and Disease Registry (US). https://www.ncbi.nlm.nih.gov/books/NBK158851/

  • Xu ZH, Yin XA, Yang ZF (2014) An optimisation approach for shallow lake restoration through macrophyte management. Hydrol Earth Syst Sci 18(6):2167–2176

    Google Scholar 

  • Yan SH, Song W, Guo JY (2017) Advances in management and utilization of invasive water hyacinth (Eichhornia crassipes) in aquatic ecosystems–a review. Crit Rev Biotechnol 37(2):218–228

    Google Scholar 

Download references

Acknowledgements

The Head of the Botany Department, University of Lucknow is acknowledged for providing central lab facility to execute the experiments and to analyse samples.

Author information

Authors and Affiliations

Authors

Contributions

KS: experimental setup, data cumulation and analysis, and manuscript composition. PS: analytical interpretation, statistical analysis on data. AK: conceptualization of experimental design, final editing, overall guidance and submission of the manuscript.

Corresponding author

Correspondence to Alka Kumari.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K., Saxena, P. & Kumari, A. Comparative Study of Chromium Phytoremediation by Two Aquatic Macrophytes. Bull Environ Contam Toxicol 111, 16 (2023). https://doi.org/10.1007/s00128-023-03773-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00128-023-03773-x

Keywords

Navigation