Skip to main content
Log in

Durable magnetite-chitosan core–shell nanoparticles as reusable green nanocatalyst for the benign one-pot three-component synthesis of spirooxindoles and spirochromenes at ambient temperature under both solvent-free and ultrasonic conditions in aqueous ethanol solution

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In the present research, a novel, efficient, and green nanocatalyst has been afforded by coating Fe3O4 nanoparticles with chitosan through simple and readily available chemicals. Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, dynamic light scattering, vibrating sample magnetometer, and thermogravimetric analyses were used to describe this nanocatalyst. The catalytic performance of the Fe3O4@chitosan heterogeneous nanocatalyst was investigated in an environmentally benign and efficacious fabrication of a variety of spirooxindole and spirochromene derivatives in high yields via employing three-component reactions of malononitrile, dimedone, and isatin in a solvent-free medium (Method A) and under ultrasonic conditions in EtOH/H2O (Method B) at ambient temperature. The achieved nanocatalyst could be easily removed from the mixture of the reaction and was recyclable seven times via a simple external magnet without appreciable loss in catalytic proficiency. Several other advantages of this methodology were environmental friendliness, simple operation, excellent yields, economical handling, and easy workup.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Scheme 3
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Rahman, R. Nongkhlaw, Org. Chem. 6, 272–313 (2018). https://doi.org/10.24820/ark

    Article  Google Scholar 

  2. F. Kalantari, A. Ramazani, M.R. Poor Heravi, H. Aghahosseini, K. Ślepokura, Inorg. Chem. 60, 15010–15023 (2021). https://doi.org/10.1021/acs.inorgchem.1c02470

    Article  CAS  PubMed  Google Scholar 

  3. A.K. Rathi, R. Zboril, R.S. Varma, M.B. Gawande, A.C.S. Symp, Series 1238, 39–78 (2016). https://doi.org/10.1021/bk-2016-1238.ch002

    Article  CAS  Google Scholar 

  4. M. Narasimhan, M. Chandrasekaran, S. Govindasamy, A. Aravamudhan, J. Environ. Chem. Eng. 9, 104876 (2021). https://doi.org/10.1016/j.jece.2020.104876

    Article  CAS  Google Scholar 

  5. S. Liu, B. Yu, S. Wang, Y. Shen, H. Cong, Adv. Colloid Interface Sci. 281, 102165 (2020). https://doi.org/10.1016/j.cis.2020.102165

    Article  CAS  PubMed  Google Scholar 

  6. A. Maleki, F. Hassanzadeh-Afruzi, Z. Varzi, M.S. Esmaeili, Mater. Sci. Eng. C 109, 110502 (2020). https://doi.org/10.1016/j.msec.2019.110502

    Article  CAS  Google Scholar 

  7. M. Kamalzare, M.R. Ahghari, M. Bayat, A. Maleki, Sci. Rep. 11, 1–10 (2021). https://doi.org/10.1038/s41598-021-99121-2

    Article  CAS  Google Scholar 

  8. M. Dohendou, K. Pakzad, Z. Nezafat, M. Nasrollahzadeh, M.G. Dekamin, Int. J. Biol. Macromol. 192, 771–819 (2021). https://doi.org/10.1016/j.ijbiomac.2021.09.162

    Article  CAS  PubMed  Google Scholar 

  9. A. Maleki, M. Aghaei, N. Ghamari, Chem. Lett. 44, 259–261 (2015). https://doi.org/10.1246/cl.141074

    Article  CAS  Google Scholar 

  10. Y.V.D. Nageswar, N.L.C. Domingues, R. Katla, Polysaccharides (2021). https://doi.org/10.1002/9781119711414.ch25

    Article  Google Scholar 

  11. S.S. Khot, P.V. Anbhule, U.V. Desai, P.P. Wadgaonkar, Comptes Rendus Chim. 21, 814–821 (2018). https://doi.org/10.1016/j.crci.2018.05.005

    Article  CAS  Google Scholar 

  12. B. Yu, D.Q. Yu, H.M. Liu, Eur. J. Med. Chem. 97, 673–698 (2015). https://doi.org/10.1016/j.ejmech.2014.06.056

    Article  CAS  PubMed  Google Scholar 

  13. K. Ramakumar, T. Maji, J.J. Partridge, J.A. Tunge, Org. Lett. 19, 4014–4017 (2017). https://doi.org/10.1021/acs.orglett.7b01752

    Article  CAS  PubMed  Google Scholar 

  14. N. Ye, H. Chen, E.A. Wold, P.Y. Shi, J. Zhou, A.C.S. Infect, Dis. 2, 382–392 (2016). https://doi.org/10.1021/acsinfecdis.6b00041

    Article  CAS  Google Scholar 

  15. M.M. Heravi, T. Momeni, M. Mirzaei, V. Zadsirjan, M. Tahmasebi, Inorg. Nano-Metal. Chem. 51, 896–909 (2021). https://doi.org/10.1080/24701556.2020.1813172

    Article  CAS  Google Scholar 

  16. L.M. Zhou, R.Y. Qu, G.F. Yang, Expert Opin. Drug Discov. 15, 603–625 (2020). https://doi.org/10.1080/17460441.2020.1733526

    Article  CAS  PubMed  Google Scholar 

  17. J.P. MacDonald, J.J. Badillo, G.E. Arevalo, A. Silva-García, A.K. Franz, A.C.S. Comb, Sci. 14, 285–293 (2012). https://doi.org/10.1021/co300003c

    Article  CAS  Google Scholar 

  18. M. Baghernejad, S. Khodabakhshi, S. Tajik, New J. Chem. 40, 2704–2709 (2016). https://doi.org/10.1039/C5NJ03027G

    Article  CAS  Google Scholar 

  19. P. Brandão, C.S. Marques, E.P. Carreiro, M. Pineiro, A.J. Burke, Chem. Rec. 21, 924–1037 (2021). https://doi.org/10.1002/tcr.202000167

    Article  CAS  PubMed  Google Scholar 

  20. M.V. Murlykina, A.D. Morozova, I.M. Zviagin, Y.I. Sakhno, S.M. Desenko, V.A. Chebanov, Front. Chem. 6, 1–43 (2018). https://doi.org/10.3389/fchem.2018.00527

    Article  ADS  CAS  Google Scholar 

  21. A. Chaudhary, P. Saluja, G. Khanna, Green Chemistry in Environmental Sustainability and Chemical Education (Springer, Singapore, 2018), pp.15–21. https://doi.org/10.1007/978-981-10-8390-7_2

    Book  Google Scholar 

  22. C.J. Gerry, S.L. Schreiber, Curr. Opin. Chem. Biol. 56, 1–9 (2020). https://doi.org/10.1016/j.cbpa.2019.08.008

    Article  CAS  PubMed  Google Scholar 

  23. W.R.J.D. Galloway, A. Isidro-Llobet, D.R. Spring, Nat. Commun. 1, 1–13 (2020). https://doi.org/10.1038/ncomms1081

    Article  CAS  Google Scholar 

  24. S. Nagaraju, B. Paplal, K. Sathish, S. Giri, D. Kashinath, Tetrahedron Lett. 58, 4200–4204 (2017). https://doi.org/10.1016/j.tetlet.2017.09.060

    Article  CAS  Google Scholar 

  25. S.M. Baghbanian, M. Tajbakhsh, M. Farhang, Comptes Rendus Chim. 17, 1160–1164 (2014). https://doi.org/10.1016/j.crci.2013.12.005

    Article  CAS  Google Scholar 

  26. A. Khalafi-Nezhad, S. Mohammadi, A.C.S. Comb, Science 9, 512–518 (2013). https://doi.org/10.1021/co400080z

    Article  CAS  Google Scholar 

  27. A. Deepthi, N.V. Thomas, V. Sathi, Curr. Green Chem. 6, 210–225 (2019). https://doi.org/10.2174/2213346106666191019144116

    Article  CAS  Google Scholar 

  28. M. Bashkar, M. Bavadi, E. Ghaderi, K. Niknam, Mol. Divers. 25, 2001–2015 (2021). https://doi.org/10.1007/s11030-020-10091-5

    Article  CAS  PubMed  Google Scholar 

  29. M.M. Li, C.S. Duan, Y.Q. Yu, D.Z. Xu, Dye. Pigment. 150, 202–206 (2018). https://doi.org/10.1016/j.dyepig.2017.12.007

    Article  CAS  Google Scholar 

  30. H. Hassani, A. Nozarie, Asian J. Green Chem. 3, 59–69 (2018). https://doi.org/10.22631/ajgc.2017.101572.1032

    Article  CAS  Google Scholar 

  31. A. Allahresani, B. Taheri, M.A. Nasseri, Res. Chem. Intermed. 44, 1173–1188 (2018). https://doi.org/10.1007/s11164-017-3160-8

    Article  CAS  Google Scholar 

  32. A. Bazgir, G. Hosseini, R. Ghahremanzadeh, A.C.S. Comb, ACS Comb. Sci. 15, 530–534 (2013). https://doi.org/10.1021/co400057h

    Article  CAS  PubMed  Google Scholar 

  33. M. Rouhi, B. Sadeghi, M. Moslemin, Bulg. Chem. Commun. 50, 23–28 (2018)

    Google Scholar 

  34. S.G. Azarnier, M. Esmkhani, Z. Dolatkhah, S. Javanshir, Res. Sq. (2022). https://doi.org/10.1038/s41598-022-10102-5

    Article  Google Scholar 

  35. S. Saneinezhad, L. Mohammadi, V. Zadsirjan, F.F. Bamoharram, M.M. Heravi, Sci. Rep. 10, 1–26 (2020). https://doi.org/10.1038/s41598-020-70738-z

    Article  CAS  Google Scholar 

  36. B. Karmakar, A. Nayak, J. Banerji, Tetrahedron Lett. 53, 5004–5007 (2012). https://doi.org/10.1016/j.tetlet.2012.07.030

    Article  CAS  Google Scholar 

  37. Y.K. Tailor, S. Khandelwal, K. Verma, R. Gopal, M. Kumar, ChemistrySelect 2, 5933–5941 (2017). https://doi.org/10.1002/slct.201700648

    Article  CAS  Google Scholar 

  38. A. Rauof, M. Ali, Eng. Technol. Q. Rev. 3, 45–51 (2020). https://doi.org/10.5281/zenodo.3940869

    Article  Google Scholar 

  39. N. Mohammadian, B. Akhlaghinia, Res. Chem. Intermed. 45, 4737–4756 (2019). https://doi.org/10.1007/s11164-019-03860-x

    Article  CAS  Google Scholar 

  40. K. Hemmat, M.A. Nasseri, A. Allahresani, S. Ghiami, J. Organomet. Chem. 903, 120996 (2019). https://doi.org/10.1016/j.jorganchem.2019.120996

    Article  CAS  Google Scholar 

  41. G. Shanthi, G. Subbulakshmi, P.T. Perumal, Tetrahedron 63, 2057–2063 (2017). https://doi.org/10.1016/j.tet.2006.12.042

    Article  CAS  Google Scholar 

  42. M.A. Nasseri, B. Zakerinasab, Res. Chem. Intermed. 41, 5261–5270 (2015). https://doi.org/10.1007/s11164-014-1627-4

    Article  CAS  Google Scholar 

  43. H.M. Meshram, D.A. Kumar, B.R.V. Prasad, P.R. Goud, Helv. Chim. Acta 93, 648–653 (2019). https://doi.org/10.1002/hlca.200900273

    Article  CAS  Google Scholar 

  44. S.L. Zhu, S.J. Ji, Y. Zhang, Tetrahedron 63, 9365–9372 (2007). https://doi.org/10.1016/j.tet.2007.06.113

    Article  CAS  Google Scholar 

  45. M. Dabiri, M. Bahramnejad, M. Baghbanzadeh, Tetrahedron 65, 9443–9447 (2009). https://doi.org/10.1016/j.tet.2009.08.070

    Article  CAS  Google Scholar 

  46. A. Mobinikhaledi, N. Foroughifar, M.A.B. Fard, Synth. Commun. 41, 441–450 (2011). https://doi.org/10.1080/00397911003587507

    Article  CAS  Google Scholar 

  47. A.R. Khorrami, P. Kiani, A. Bazgir, Monatshefte furr Chem. 142, 287–295 (2011). https://doi.org/10.1007/s00706-011-0446-1

    Article  CAS  Google Scholar 

  48. Y. Li, H. Chen, C. Shi, D. Shi, S. Ji, J. Comb. Chem. 12, 231–237 (2010). https://doi.org/10.1021/cc9001185

    Article  CAS  PubMed  Google Scholar 

  49. D.R. Chandam, A.G. Mulik, D.R. Patil, M.B. Deshmukh, Res. Chem. Intermed. 42, 1411–1423 (2016). https://doi.org/10.1007/s11164-015-2093-3

    Article  CAS  Google Scholar 

  50. A. Gharib, N.N. Pesyan, B.R.H. Khorasani, M. Roshani, J.W. Scheeren, Bulg. Chem. Commun. 45, 371–378 (2013)

    CAS  Google Scholar 

  51. J. Safaei-Ghomi, M. Tavazo, H. Shahbazi-Alavi, Zeitschrift fur Naturforsch.—Sect. B J. Chem. Sci. 74, 733–738 (2019). https://doi.org/10.1515/znb-2019-0091

    Article  CAS  Google Scholar 

  52. A. Maleki, N. Ghamari, M. Kamalzare, RSC Adv. 4, 9416–9423 (2014). https://doi.org/10.1039/C3RA47366J

    Article  ADS  CAS  Google Scholar 

  53. A. Maleki, M. Aghaei, N. Kamalzare, Int. J. Nanosci. Nanotechnol. 12, 215–222 (2016)

    Google Scholar 

  54. J. Safari, S.H. Banitaba, S.D. Khalili, Ultrason. Sonochem. 20, 401–407 (2013). https://doi.org/10.1016/j.ultsonch.2012.07.007

    Article  CAS  PubMed  Google Scholar 

  55. D. Nagargoje, P. Mandhane, S. Shingote, P. Badadhe, C. Gill, Ultrason. Sonochem. 19(1), 94–96 (2012). https://doi.org/10.1016/j.ultsonch.2011.05.009

    Article  CAS  PubMed  Google Scholar 

  56. J. Singh, M. Srivastava, J. Dutta, P.K. Dutta, Int. J. Biol. Macromol. 48, 170–176 (2011). https://doi.org/10.1016/j.ijbiomac.2010.10.016

    Article  CAS  PubMed  Google Scholar 

  57. G. Yin Li, Y. Ren Jiang, K. Long Huang, P. Ding, J. Chen, J. Alloys Compd. 466, 451–456 (2008). https://doi.org/10.1016/j.jallcom.2007.11.100

    Article  CAS  Google Scholar 

  58. J.P. Chen, P.C. Yang, Y.H. Ma, T. Wu, Carbohydr. Polym. 84, 364–372 (2011). https://doi.org/10.1016/j.carbpol.2010.11.052

    Article  CAS  Google Scholar 

  59. P. Saluja, K. Aggarwal, J.M. Khurana, Synth. Commun. 43, 3239–3246 (2013). https://doi.org/10.1080/00397911.2012.760130

    Article  CAS  Google Scholar 

  60. M. Esmaeilpour, A.R. Sardarian, J. Javidi, Appl. Catal. A Gen. 445, 359–367 (2012). https://doi.org/10.1016/j.apcata.2012.09.010

    Article  CAS  Google Scholar 

  61. G. Nabiyouni, M. Julaee, D. Ghanbari, P.C. Aliabadi, N. Safaie, J. Ind. Eng. Chem. 21, 599–603 (2015). https://doi.org/10.1016/j.jiec.2014.03.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the research council of Shiraz University and are grateful for financial support from the Council of Iran National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Sardarian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5246 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mardaneh, P., Sardarian, A.R. Durable magnetite-chitosan core–shell nanoparticles as reusable green nanocatalyst for the benign one-pot three-component synthesis of spirooxindoles and spirochromenes at ambient temperature under both solvent-free and ultrasonic conditions in aqueous ethanol solution. J IRAN CHEM SOC 21, 211–225 (2024). https://doi.org/10.1007/s13738-023-02919-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-023-02919-2

Keywords

Navigation