Skip to main content

Advertisement

Log in

Synthesis, antimicrobial and antiproliferative activities, molecular docking, and computational studies of novel heterocycles

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

We studied the reaction of enaminone 3 with some nitrogen nucleophiles to afford the corresponding pyrazole 4, isoxazole 5, and pyrimidine 6 derivatives, and the reactivity of enaminone 3 with heterocyclic amines to afford the corresponding fused pyrrolo[1,2-a]pyrimidine 9a, imidazo[1,2-a]pyrimidine 9b, phenylpyrrolo[1,2-a]pyrimidine 9c, and benzo[4,5]imidazo[1,2-a]pyrimidine 11 derivatives. Additionally, the electrophilic azo-coupling reaction of enaminone 3 with aromatic diazonium salts in pyridine afforded the corresponding intermediate hydrazines 13ad, which cyclized to pyrazolo[5,1-c][1,2,4]triazine derivatives 14ad. Moreover, addition of (E)-3-(dimethylamino)-1-(2-hydroxyphenyl)prop-2-en-1-one (3) with hydrazonoyl chloride derivatives 15a,b gave novel pyrazole derivatives 17a,b. Almost all of the synthesized heterocyclic compounds exhibited antimicrobial and in vitro anticancer activity (HepG2 and MCF-7 cell lines). Furthermore, the molecular docking of the most effective compound, i.e., 7-(4-fluorophenyl)pyrazolo[5,1-c][1,2,4]triazin-3-yl)(2-hydroxyphenyl)methanone (14c), was studied against (PDB ID: 3t88), (PDB ID: 2wje), (PDB ID: 4ynt), and (PDB ID: 1tgh) to investigate its antimicrobial activity when attached to different proteins with short bond length. Compound 14a docked with (PDB ID: 4hdq) and (PDB ID: 3pxe) with energy affinity of −9.946 and −10.55 kcal/mol, with the pyrazolo[5,1-c][1,2,4]triazine derivative involved in the pockets of the proteins. Moreover; the theoretical and investigational studies of compounds 14a,c were compatible with spectral data obtained at HF/6-31G(d) and DFT/B3LYP/6-31G(d) level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.-Y. Lu, I.J. Barve, M. Selvaraju, C.-M. Sun, One-pot synthesis of unsymmetrical bis-heterocycles: benzimidazole-, benzoxazole-, and benzothiazole-linked thiazolidines. ACS Comb. Sci. 22(1), 42–48 (2020). https://doi.org/10.1021/acscombsci.9b00161

    Article  CAS  PubMed  Google Scholar 

  2. S. Mukherjee, A. Pramanik, Catalyst-free one-pot three-component synthesis of 4-hydroxy-3-pyrazolylcoumarins in ethanol at room temperature: enolisable aroylhydrazones as efficient ambident nucleophile. ACS Sustain. Chem. Eng. 8(1), 403–414 (2020). https://doi.org/10.1021/acssuschemeng.9b05682

    Article  CAS  Google Scholar 

  3. N. Cankařová, E. Schütznerová, V. Krchňák, Traceless solid-phase organic synthesis. Chem. Rev. 119(24), 12089–12207 (2019). https://doi.org/10.1021/acs.chemrev.9b00465

    Article  CAS  PubMed  Google Scholar 

  4. E. Niknam, F. Panahi, F. Daneshgar, F. Bahrami, A. Khalafi-Nezhad, Metal–organic framework MIL-101(Cr) as an efficient heterogeneous catalyst for clean synthesis of benzoazoles. ACS Omega 3(12), 17135–17144 (2018). https://doi.org/10.1021/acsomega.8b02309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. S. Kurhade, E. Diekstra, F. Sutanto, K. Kurpiewska, J. Kalinowska-Tłuścik, A. Dömling, Multicomponent reaction based synthesis of 1-tetrazolylimidazo[1,5-a]pyridines. Org. Lett. 20(13), 3871–3874 (2018). https://doi.org/10.1021/acs.orglett.8b01452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S.A. Khanum, S. Shashikanth, S. Umesha, R. Kavitha, Synthesis and antimicrobial study of novel heterocyclic compounds from hydroxybenzophenones. Eur. J. Med. Chem. 40(11), 1156–1162 (2005). https://doi.org/10.1016/j.ejmech.2005.04.005

    Article  CAS  PubMed  Google Scholar 

  7. H. Muğlu, H. Yakan, H.A. Shouaib, New 1,3,4-thiadiazoles based on thiophene-2-carboxylic acid: synthesis, characterization, and antimicrobial activities. J. Mol. Struct. 1203, 127470 (2020). https://doi.org/10.1016/j.molstruc.2019.127470

    Article  CAS  Google Scholar 

  8. C. Tratrat, M. Haroun, A. Paparisva, A. Geronikaki, C. Kamoutsis, A. Ćirić, J. Glamočlija, M. Soković, C. Fotakis, P. Zoumpoulakis, S.S. Bhunia, A.K. Saxena, Design, synthesis and biological evaluation of new substituted 5-benzylideno-2-adamantylthiazol[3,2-b][1,2,4]triazol-6(5H)ones. Pharmacophore models for antifungal activity. Arab. J. Chem. 11, 573–590 (2018). https://doi.org/10.1016/j.arabjc.2016.06.007

    Article  CAS  Google Scholar 

  9. J. Cramer, C.P. Sager, B. Ernst, Hydroxyl groups in synthetic and natural-product-derived therapeutics: a perspective on a common functional group. J. Med. Chem. 62(20), 8915–8930 (2019). https://doi.org/10.1021/acs.jmedchem.9b00179

    Article  CAS  PubMed  Google Scholar 

  10. R. Rani, C. Granchi, Bioactive heterocycles containing endocyclic N-hydroxy groups. Eur. J. Med. Chem. 97, 505–524 (2015). https://doi.org/10.1016/j.ejmech.2014.11.031

    Article  CAS  PubMed  Google Scholar 

  11. J. Akhtar, A.A. Khan, Z. Ali, R. Haider, M.S. Yar, Structure–activity relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem. 125, 143–189 (2017). https://doi.org/10.1016/j.ejmech.2016.09.023

    Article  CAS  PubMed  Google Scholar 

  12. O. Nagaraja, Y.D. Bodke, I. Pushpavathi, S. Ravi Kumar, Synthesis, characterization and biological investigations of potentially bioactive heterocyclic compounds containing 4-hydroxy coumarin. Heliyon. 6(6), e04245 (2020). https://doi.org/10.1016/j.heliyon.2020.e04245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. N. Obaiah, Y.D. Bodke, S. Telkar, Synthesis of 3-[(1H-benzimidazol-2-ylsulfanyl)(aryl)methyl]-4-hydroxycoumarin derivatives as potent bioactive molecules. ChemistrySelect 5, 178–184 (2020). https://doi.org/10.1002/slct.201903472

    Article  CAS  Google Scholar 

  14. O. Nagaraja, Y.D. Bodke, R. Kenchappa, S. Ravi Kumar, Synthesis and characterization of 3-[3-(1H-benzimidazol-2-ylsulfanyl)-3-phenyl propanoyl]-2H-chromen-2-one derivatives as potential biological agents. Chem. Data Collect. 27, 100369 (2020)

    Article  CAS  Google Scholar 

  15. R. Kenchappa, Y.D. Bodke, Synthesis, analgesic and anti-inflammatory activity of benzofuran pyrazole heterocycles. Chem. Data Collect. 28, 100453 (2020). https://doi.org/10.1016/j.cdc.2020.100453

    Article  CAS  Google Scholar 

  16. M. Gaba, C. Mohan, Development of drugs based on imidazole and benzimidazole bioactive heterocycles: recent advances and future directions. Med. Chem. Res. 25, 173–210 (2016). https://doi.org/10.1007/s00044-015-1495-5

    Article  CAS  Google Scholar 

  17. A.M. Fahim, A.M. Farag, E.M.A. Yakout, G.A.M. Nawwar, E.A. Ragab, Synthesis, biological evaluation of 1,3,4-oxadiazole, triazole and uracil derivatives from poly (ethylene terephthalate) waste. Egypt J. Chem. 59, 285–303 (2016). https://doi.org/10.21608/EJCHEM.2016.1048

    Article  Google Scholar 

  18. A.A.E.-H. Hassan, Heterocyclic synthesis via enaminones: synthesis and molecular docking studies of some novel heterocyclic compounds containing sulfonamide moiety. Int. J. Org. Chem. 4(1), 68–81 (2014). https://doi.org/10.4236/ijoc.2014.41009

    Article  CAS  Google Scholar 

  19. F.N. Takla, A.A. Farahat, M.A.-A. El-Sayed, M.N.A. Nasr, Molecular modeling and synthesis of new heterocyclic compounds containing pyrazole as anticancer drugs. Int. J. Org. Chem. 7, 369–388 (2017). https://doi.org/10.4236/ijoc.2017.74030

    Article  CAS  Google Scholar 

  20. S. Cunha, A.T. Gomes, Synthesis of α-aryl enaminones through reactions of β-aryl enones with benzyl azide. Tetrahedron Lett. 53(49), 6710–6713 (2012). https://doi.org/10.1016/j.tetlet.2012.09.125

    Article  CAS  Google Scholar 

  21. A. Fahim, A.M. Farag, A. Mermer, H. Bayrak, Y. Şirin, Synthesis of novel β-lactams: antioxidant activity, acetylcholinesterase inhibition and computational studies. J. Mol. Struct. 1233, 130092 (2021). https://doi.org/10.1016/j.molstruc.2021.130092

    Article  CAS  Google Scholar 

  22. A. Fahim, A. Mohamed, M. Ibrahim, Experimental and theoretical studies of some propiolate esters derivatives. J. Mol. Struct. 1236 (2021). https://doi.org/10.1016/j.molstruc.2021.130281

  23. A. Mohamed, A. Fahim, M. Ibrahim, Theoretical investigation on hydrogen bond interaction between adrenaline and hydrogen sulfide. J. Mol. Model. 26, 354 (2020). https://doi.org/10.1007/s00894-020-04602-2

    Article  CAS  Google Scholar 

  24. A.S. Shawali, A new convenient synthesis of 3-hetaryl-pyrazolo[5,1-c][1,2,4]triazines. J. Adv. Res. 3, 185–188 (2012). https://doi.org/10.1016/j.jare.2011.07.004

    Article  CAS  Google Scholar 

  25. K.M. Dawood, S.M. Moghazy, A.M. Farag, Convenient synthesis of azolopyrimidine, azolotriazine, azinobenzimidazole and 1,3,4-thiadiazole derivatives. Arab. J. Chem. 10, S2782–S2789 (2017). https://doi.org/10.1016/j.arabjc.2013.10.029

    Article  CAS  Google Scholar 

  26. A.M. Fahim, E.H.I. Ismael, Synthesis, antimicrobial activity and quantum calculations of Novel sulphonamide derivatives, Egypt. J. Chem. 62(8), 1427–1440 (2019). https://doi.org/10.21608/EJCHEM.2019.6870.1575

    Article  Google Scholar 

  27. A.M. Fahim, A.M. Farag, E.M.A. Yakout, G.A.M. Nawwar, E.A. Ragab, Sun degradation and synthesis of new antimicrobial and antioxidant utilisingpoly(ethylene terephthalate) waste. Int. J. Environ. Waste Manag. 22, 239–259 (2018). https://doi.org/10.1504/IJEWM.2018.094111

    Article  CAS  Google Scholar 

  28. E.M. Akl, S. Dacrory, M.S. Abdel-Aziz, S. Kamel, A.M. Fahim, Preparation and characterization of novel antibacterial blended films based on modified carboxymethyl cellulose/phenolic compounds. Polym. Bull. 78, 1061–1085 (2021). https://doi.org/10.1007/s00289-020-03148-w

    Article  CAS  Google Scholar 

  29. G. Hagelueken, H. Huang, I.L. Mainprize, C. Whitfield, J.H. Naismith, Crystal structures of wzb of Escherichia coli and cpsb of Streptococcus pneumoniae, representatives of two families of tyrosine phosphatases that regulate capsule assembly. J. Mol. Biol. 392, 678–688 (2009). https://doi.org/10.1016/j.jmb.2009.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. A. Aboelnaga, A.M. Fahim, T.H. El-Sayed, Computer aid screening for potential antimalarial choroquinone compounds as Covid 19 utilizing computational calculations and molecular docking study. OnLine J. Biol. Sci. 20(4), 207–220 (2020). https://doi.org/10.3844/ojbsci.2020.207.220

    Article  CAS  Google Scholar 

  31. K.K. Masibi, O.E. Fayemi, A.S. Adekunle, A.M. Al-Mohaimeed, A.M. Fahim, B.B. Mamba, E.E. Ebenso, Electrochemical detection of endosulfan using an AONP-PANI-SWCNT modified glassy carbon electrode. Materials 14, 723 (2021). https://doi.org/10.3390/ma14040723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. C.A. Schiffer, I.J. Clifton, V.J. Davisson, D.V. Santi, R.M. Stroud, Crystal structure of human thymidylate synthase: a structural mechanism for guiding substrates into the active site. Biochemistry 34, 16279–16287 (1995). https://doi.org/10.1021/bi00050a007

    Article  CAS  PubMed  Google Scholar 

  33. A. Barakat, S.M. Soliman, H.A. Ghabbour, M.A. Al-Majid, M.S. Islam, A.A. Ghfar, Molecular structure, spectroscopic and DFT computational studies of arylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione. Curr. Comput.-Aided Drug Des. 6, 110 (2016). https://doi.org/10.3390/cryst6090110

    Article  CAS  Google Scholar 

  34. A.M. Farag, A.M. Fahim, Synthesis, biological evaluation and DFT calculation of novel pyrazole and pyrimidine derivatives. J. Mol. Struct. 1179, 304–314 (2019). https://doi.org/10.1016/j.molstruc.2018.11.008

    Article  CAS  Google Scholar 

  35. P. Skehan, R. Strong, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J.T. Warren, H. Bokesch, S. Kenney, M. Boyd, New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107–1112 (1990). https://doi.org/10.1093/jnci/82.13.1107

    Article  CAS  PubMed  Google Scholar 

  36. A.M. Fahim, A.M. Farag, M.R. Shabban, E.A. Ragab, Regioselective synthesis and DFT study of novel fused heterocyclic utilizing thermal heating and Microwave Irradiation. Afinidad 75, 148–159 (2018)

    CAS  Google Scholar 

  37. A.M. Fahim, A.M. Farag, Synthesis, antimicrobial evaluation, molecular docking and theoretical calculations of novel pyrazolo[1,5-a]pyrimidine derivatives. J. Mol. Struct. 1199, 127025 (2020). https://doi.org/10.1016/j.molstruc.2019.127025

    Article  CAS  Google Scholar 

  38. A.M. Fahim, Microwave-assisted synthesis of pyrazolo[1,5-a]pyrimidine, triazolo[1,5-a]pyrimidine, pyrimido[1,2-a]benzimdazole, triazolo[5,1-c] [1,2,4]triazine and imidazo[2,1-c][1,2,4]triazine. Curr. Microw. Chem. 5(2), 111–119 (2018). https://doi.org/10.2174/2213335605666180425144009

    Article  CAS  Google Scholar 

  39. A.M. Fahim, E.M.A. Yakout, G.A. Nawwar, Facile synthesis of in-vivo insecticidal and antimicrobial evaluation of bis heterocyclic moiety from pet waste. Online J. Biol. Sci. 14, 196–208 (2014). https://doi.org/10.3844/ojbssp.2014.196.208

    Article  Google Scholar 

  40. A.M. Fahim, M.S. Elshikh, N.M. Darwish, Synthesis, antitumor activity, molecular docking and DFT study of Novel pyrimidiopyrazole derivatives. Curr. Comput. Aided Drug Des. 16(4), 486–499 (2020). https://doi.org/10.2174/1573409915666190710094425

    Article  CAS  PubMed  Google Scholar 

  41. A.M. Fahim, A.M. Farag, G.A.M. Nawwar, E.M.A. Yakout, E.A. Ragab, Synthesis and DFT calculations of aza-Michael adducts obtained from degradation poly(methyl methacrylate) plastic wastes. Int. J. Environ. Waste Manag. 24(4), 337–353 (2019). https://doi.org/10.1504/IJEWM.2019.103641

    Article  Google Scholar 

  42. A.R. Gingras, W. Puzon-McLaughlin, M.H. Ginsberg, The structure of the ternary complex of Krev interaction trapped 1 (KRIT1) bound to both the Rap1 GTPase and the heart of glass (HEG1) cytoplasmic tail. J. Biol. Chem. 288, 23639–23649 (2013). https://doi.org/10.1074/jbc.M113.462911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A.M. Fahim, Microwave-assisted regioselective synthesis and biological evaluation of pyrano[2,3-c]pyridine derivatives utilizing DMAP as a catalyst. Online J. Biol. Sci. 17, 394–403 (2017). https://doi.org/10.3844/ojbsci.2017.394.403

    Article  CAS  Google Scholar 

  44. S. Dacrory, A.M. Fahim, Synthesis, anti-proliferative activity, computational studies of tetrazole cellulose utilizing different homogenous catalyst. Carbohydr. Polym. 229, 115537 (2020). https://doi.org/10.1016/j.carbpol.2019.115537

    Article  CAS  PubMed  Google Scholar 

  45. A.M. Fahim, B. Wasiniak, J.P. Łukaszewicz, Molecularly imprinted polymer and computational study of (E)-4-(2-cyano-3-(dimethylamino)acryloyl)benzoic acid from poly(ethylene terephthalate) plastic waste. Curr. Anal. Chem. 16(2), 119–137 (2020). https://doi.org/10.2174/1573411015666190131123843

    Article  CAS  Google Scholar 

  46. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Hratchian, H.P. Li, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision a.1 (Gaussian Inc., Wallingford, 2009).

    Google Scholar 

  47. E.A. Zayed, M.A. Zayed, A.M. Fahim, F.A. El-Samahy, Synthesis of novel macrocyclic Schiff’s-base and its complexes having N2O2 group of donor atoms. Characterization and anticancer screening are studied. Appl. Organometal. Chem. 31, e3694 (2017). https://doi.org/10.1002/aoc.3694

    Article  CAS  Google Scholar 

  48. A.M. Fahim, A.M. Farag, G.A.M. Nawwar, E.M.A. Yakout, E.A. Ragab, Chemistry of terephthalate derivatives: a review. Int. J. Environ. Waste Manag. 24(3), 273–301 (2019). https://doi.org/10.1504/IJEWM.2019.103104

    Article  Google Scholar 

  49. R. Dennington, T. Keith, J. Millam, GaussView, Version 5 (SemichemInc, Shawnee Mission, 2009).

    Google Scholar 

  50. S. Mondal, S.M. Mandal, T.K. Mondal, C. Sinha, Spectroscopic characterization, antimicrobial activity, DFT computation and docking studies of sulfonamide Schiff bases. J. Mol. Struct. 1127, 557–567 (2017). https://doi.org/10.1016/j.molstruc.2016.08.011

    Article  CAS  Google Scholar 

  51. O. Trott, A.J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010). https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A.J. Olson, AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009). https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. R. Almog, C.A. Waddling, F. Maley, G.F. Maley, P. Van Roey, The Crystal structure of a deletion mutant of human thymidylate synthase D (7e29) andits ternary complex with Tomudex and dUMP. Prot. Sci. 10, 988–996 (2001). https://doi.org/10.1110/ps.47601

    Article  CAS  Google Scholar 

  54. K. Fukui, Role of frontier orbitals in chemical reactions. Science 218, 747–754 (1982). https://doi.org/10.1126/science.218.4574.747

    Article  CAS  PubMed  Google Scholar 

  55. E. Runge, E.K.U. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984). https://doi.org/10.1103/PhysRevLett.52.997

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa M. Fahim.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 4615 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahim, A.M., Tolan, H.E.M., Awad, H. et al. Synthesis, antimicrobial and antiproliferative activities, molecular docking, and computational studies of novel heterocycles. J IRAN CHEM SOC 18, 2965–2981 (2021). https://doi.org/10.1007/s13738-021-02251-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-021-02251-7

Keywords

Navigation