Skip to main content
Log in

Photodegradation of chloramphenicol and paracetamol using PbS/TiO2 nanocomposites produced by green synthesis

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The present study describes the photocatalytic potential of the successfully synthesized nanocrystalline PbS/TiO2 nanocomposites in the photodegradation of chloramphenicol and paracetamol. PbS and PbS/TiO2 nanoparticles were synthesized using biological sulphide produced by sulphate-reducing bacteria in batch and in a coupled bioremediation system (upflow anaerobic packed-bed reactor) for acid mine drainage treatment, yielding near-complete metal precipitation (~ 100–99%, respectively). The PbS and PbS/TiO2 composites obtained using sulphide generated in batch have an average particle size ranging from 17 to 25 nm and 15 to 20 nm, respectively, while in bioreactor, both PbS and PbS/TiO2 particles have a similar size range from 20 to 50 nm. All the produced particles presented crystalline cubic structure. The specific surface area of TiO2 and PbS/TiO2 was estimated to be 46.559 m2/g and 38.005 m2/g, respectively. Chloramphenicol removal by photolysis was about 61% after 60 min of Hg irradiation and 36% under sunlight exposition. Chloramphenicol photodegradation using PbS/TiO2 as catalyst was successfully performed in a photoreactor (Hg medium pressure, 450 W) and under solar exposition with a high drug removal efficiency of 96% and 93% after 60 min and 240 min irradiation, respectively. Using TiO2 as a catalyst for photodegradation achieved 98% removal for both Hg and sunlight irradiation (UV index ranging 7–8) after 60 min and 240 min, respectively. Paracetamol removal by photolysis was about 18%. Drug’s photocatalytic degradation using PbS/TiO2 was successfully performed under sunlight exposition with a high removal efficiency of 93%, while in the presence of TiO2, the removal was complete, after 235 min irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B.G. Gribov, K.V. Zinov'ev, O.N. Kalashnik, N.N. Gerasimenko, V.N. Smirnov et al., Semiconductors 51(13), 1675 (2017)

    Google Scholar 

  2. A.D. Furasova, E. Calabro, E. Lamanna, E.Y. Tiguntseva, E. Ushakova et al., Adv. Opt. Mater. 6, 21 (2018)

    Google Scholar 

  3. M.C. Costa, M. Martins, C. Jesus, J.C. Duarte, Water Air, Soil Pollut. 189, 149–162 (2008)

    CAS  Google Scholar 

  4. M.F. Bijmans, P.J. Van Helvoort, C.J. Buisman, P.N. Lens, Sep. Purif. Technol. 69(3), 243–248 (2009)

    CAS  Google Scholar 

  5. A.S. Ayangbenro, O.S. Olanrewaju, O.O. Babalola, Front. Microbiol. 9, 1986 (2018)

    PubMed  PubMed Central  Google Scholar 

  6. J.P. Costa, A.V. Girão, J.P. Lourenço, O.C. Monteiro, T. Trindade, M.C. Costa, Hydrometallurgy 117–118, 57–63 (2012)

    Google Scholar 

  7. J.P. Costa, A.V. Girão, J.P. Lourenço, O.C. Monteiro, T. Trindade, M.C. Costa, J. Environ. Manage. 128, 226–232 (2013)

    PubMed  Google Scholar 

  8. G. Vitor, T.C. Palma, B. Vieira, M.C. Costa, Miner. Eng. 75(1), 85–93 (2015)

    CAS  Google Scholar 

  9. G. Vitor, B. Vieira, J.P. Lourenço, O.C. Monteiro, M.C. Costa, in Poster at 14th International Conference on Environmental Science and Technology, Greece, Rhodes (2015)

  10. I. Bhatt, B.N. Tripathi, Chemosphere 82(3), 308–317 (2011)

    CAS  PubMed  Google Scholar 

  11. A. Slonopas, N. Alijabbari, C. Saltonstall, T. Globus, P. Norris, Electrochim. Acta 151, 140–149 (2015)

    CAS  Google Scholar 

  12. N.I. Fainer, M.L. Kosinova, Y.M. Rumyantsev, E.G. Salman, F.A. Kuznetsov, Thin Solid Films 280, 16–19 (1996)

    CAS  Google Scholar 

  13. X. Zhang, Y. Tang, Y. Li, Y. Wang, X. Liu, Appl. Catal. A 457, 78–84 (2013)

    CAS  Google Scholar 

  14. X. Changqi, Z. Zhicheng, W. Hailong, Y. Qiang, Mater. Sci. Eng. B 104, 5–8 (2003)

    Google Scholar 

  15. S.I. Sadovnikov, A.A. Rempel, A.I. Gusev, in Nanostructured Lead, Cadmium, and Silver Sulphides Structure, Nonstoichiometry and Properties, Vol. 256, 1st edn. (Springer International Publishing, Basel, 2018)

  16. W. Cui, M. Shao, L. Liu, Y. Liang, D. Rana, Appl. Surf. Sci. 276, 823–831 (2013)

    CAS  Google Scholar 

  17. K. Ullah, Z. Meng, S. Ye, L. Zhu, W. Oh, J. Ind. Eng. Chem. 20, 1035–1042 (2014)

    CAS  Google Scholar 

  18. S. Azimi, A. Nezamzadeh-Ejhieh, Mol. Catal. A 408, 152–160 (2015)

    CAS  Google Scholar 

  19. J.M. Herrmann, Catal. Today 53, 115–129 (1999)

    CAS  Google Scholar 

  20. R. Ameta, M.S. Solanki, S. Benjamim, S.C. Ameta, in Advanced oxidation processes for wastewater treatment. Emerging Green Chemical Technology, 1st edn. (Academic press, Udaipur, 2018), p.135

  21. M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, J. Mater. Sci. Mater. Electron. 29(3), 1719 (2017)

    Google Scholar 

  22. M. Pirhashemi, A. Habibi-Yangjeh, S.R. Pouran, J. Ind. Eng. Chem. 62, 1–25 (2018)

    CAS  Google Scholar 

  23. M. Shekofteh-Gohari, A. Habibi-Yangjeh, M. Abitorabi, A. Rouhi, Crit. Rev. Environ. Sci. Technol. 48, 806–857 (2018)

    CAS  Google Scholar 

  24. A. Akhundi, A. Habibi-Yangjeh, M. Abitorabi, S.R. Pouran, Catal. Rev. 61, 595–628 (2019)

    CAS  Google Scholar 

  25. J. Tang, Z. Zou, J. Ye, J. Gesellschaft Deutscher Chemiker (Ger. Chem. Soc.) 43(34), 4463 (2004)

    CAS  Google Scholar 

  26. J. Chatterjee, Dasgupta S. J. Photochem. Photobiol. C 6, 186–205 (2005)

    CAS  Google Scholar 

  27. J.H. Kim, J. Kim, J. Am. Chem. Soc. 134(42), 17478–17481 (2012)

    CAS  PubMed  Google Scholar 

  28. M. Sökmen, M.K. Kesir, S.Y. Alomar, Am. J. Nanosci. 3(4), 63–80 (2017)

    Google Scholar 

  29. S. Feizpoor, A. Habibi-Yangjeh, S. Vadivel, J. Photochem. Photobiol. A 341, 57–68 (2017)

    CAS  Google Scholar 

  30. S. Feizpoor, A. Habibi-Yangjeh, K. Yubuta, J. Photochem. Photobiol. A 367, 94–104 (2018)

    CAS  Google Scholar 

  31. S. Feizpoor, A. Habibi-Yangjeh, J. Colloid, Interface Sci. 524(15), 325–336 (2018)

    CAS  Google Scholar 

  32. N. Sedaghati, A. Habibi-Yangjeh, M.P.S. Vadivel, J. Photochem. Photobiol. A 384, 112066 (2019)

    CAS  Google Scholar 

  33. S. Zarezadeh, A. Habibi-Yangjeh, M. Mousavi, Adv. Powder Technol. 30(6), 1197–1209 (2019)

    CAS  Google Scholar 

  34. J.L. Martinez, Environ. Pollut. 157, 2893–2902 (2009)

    CAS  PubMed  Google Scholar 

  35. A.G. Trovó, V.A.B. Paiva, B.M.C. Filho, A.E.H. Machado, C.A. Oliveira, R.O. Santos, D. Daniel, J. Braz. Chem. Soc. 25(11), 2007–2015 (2014)

    Google Scholar 

  36. W. Deng, N. Li, H. Zheng, H. Lin, Ecotoxicol. Environ. Saf. 125, 121–127 (2016)

    CAS  PubMed  Google Scholar 

  37. M.S. Podder, C.B. Majumder, Groundw Sustain. Dev. 6, 14–42 (2018)

    Google Scholar 

  38. A.S. Giri, A.K. Golder, Groundw. Sustainable Dev. 7, 343–347 (2018)

    Google Scholar 

  39. L. Tahrani, J. Van Loco, M.H. Ben, T. Reyns, J. Water Health 14(2), 208–213 (2016)

    PubMed  Google Scholar 

  40. H. Liu, G. Zhang, C.Q. Liu, L. Li, M. Xiang, J. Environ. Monit. 11(6), 1199–1205 (2009)

    CAS  PubMed  Google Scholar 

  41. P. Gao, D. Mao, Y. Luo, L. Wang, B. Xu, L. Xu, Water Res. 46, 2355–2364 (2012)

    CAS  PubMed  Google Scholar 

  42. C. Bouki, D. Venieri, E. Diamadopoulos, Ecotoxicol. Environ. Saf. 91, 1–9 (2013)

    CAS  PubMed  Google Scholar 

  43. S.F. Mbokou, M. Pontié, B. Razafimandimby, J.P. Bouchara, E. Njanja, K.I. Tonle, Anal. Bioanal. Chem. 408, 5895 (2016)

    CAS  PubMed  Google Scholar 

  44. J. Żur, A. Piński, A. Marchlewicz, K. Hupert-Kocurek, D. Wojcieszyńska, U. Guzik, Environ. Sci. Pollut. Res. Int. 25(22), 21498–21524 (2018)

    PubMed  PubMed Central  Google Scholar 

  45. J. Vymazal, T.D. Březinová, M. Koželuh, L. Kule, Ecol. Eng. 98, 354–364 (2017)

    Google Scholar 

  46. A.M.P.T. Pereira, L.J.G. Silva, C.M. Linoa, L.M. Meisel, A. Pena, Chemosphere 144, 2507–2515 (2016)

    CAS  PubMed  Google Scholar 

  47. J. Wilkinson, P.S. Hooda, J. Barker, S. Barton, J. Swinden, Environ. Pollut. 231(1), 954–970 (2017)

    CAS  PubMed  Google Scholar 

  48. M. Brumovský, J. Bečanová, J. Kohoutek, M. Borghini, L. Nizzetto, Environ. Pollut. 229, 976–983 (2017)

    PubMed  Google Scholar 

  49. B.M. Peake, R. Braund, A. Tong, A. Louis, The life-cycle of pharmaceuticals in the environment, in: Biomedicine, 1st edn. (Woodhead Publishing Series, 2015), p. 110

  50. J. Engeldinger, C. Hummel, J. Hartmann, Day-light-photocatalysis for degradation of pharmaceuticals and personal care products in water, (Poster zum Bremer Abwasserkolloquium Bremen, 2008)

  51. T. Palma, O.C. Monteiro, J.P. Pinto da Costa, J.P. Lourenço, M.C. Costa, in Proceedings of the 2nd International Conference of Wastes Solutions, Treatments and Opportunities (WASTES, Braga, Portugal, 2013)

  52. W. Scherrer, Math. Ann. 86, 99–107 (1922)

    Google Scholar 

  53. V.C. Ferreira, M.R. Nunes, A.J. Silvestre, O.C. Monteiro, Mater. Chem. Phys. 142, 355–362 (2013)

    CAS  Google Scholar 

  54. D. Reyes-Coronado, G. Rodríguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. Coss, G. Oskam, Nanotechnology 19(14), 145605 (2008)

    CAS  PubMed  Google Scholar 

  55. Decreto-Lei nº 236/98 of 1 August. Diário Da República no 176/98 - I Série A. Ministério do Ambiente. Lisboa

  56. I. Capek, Noble Metal Nanoparticles, in: Nanostructure Science and Technology, 1st edn. (Springer, Tokyo, 2017)

  57. P.A. Waller, W.F. Pickering, Chem Speciat. Bioavailab. 5(1), 11–22 (1993)

    CAS  Google Scholar 

  58. Powder Diffraction File, Joint Committee on Powder Diffraction Standard, ICDD, Cards No. 05–0592 (1995)

  59. Evonik Industries (2007) https://www.aerosil.com. Retrieved 29 Jul. 2014, from https://www.novochem.ro/letoltes/aeroxide%20tio2%20p25%20en.pdf

  60. X.T. Zhou, H.B. Ji, X.J. Huang, Molecules 17, 1149–1158 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  61. T. Ohno, K. Sarukawa, K. Tokieda, M. Matsumura, J. Catal. 203, 82–86 (2001)

    CAS  Google Scholar 

  62. M. Shkir, I.M. Ashraf, S. AlFaify, Phys. Scr. 94, 2 (2019)

    Google Scholar 

  63. A. Bumajdad, M. Madkour, Y. Abdel-Moneam, M. El-Kemary, J. Mater. Sci. 49, 1743–1754 (2014)

    CAS  Google Scholar 

  64. A.V. Vorontsov, E.N. Kabachkov, I.L. Balikhin, E.N. Kurkin, V.N. Troitskii, P.G. Smirniotis, J. Adv. Oxid. Technol. 21(1), 127 (2018)

    Google Scholar 

  65. N. Mandzy, E. Grulke, T. Druffel, Powder Technol. 160, 121–126 (2005)

    CAS  Google Scholar 

  66. J. Jiang, G. Oberdörster, P. Biswas, J. Nanopart. Res. 11, 77–89 (2009)

    CAS  Google Scholar 

  67. S. Nimesh, R. Chandra, N. Gupta, Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, 1st edn. (Woodhead Publishing, Cambridge, 2017), p. 256

    Google Scholar 

  68. K. Suttiponparnit, J. Jiang, M. Sahu, S. Suvachittanont, T. Charinpanitkul, P. Biswas, Nanoscale Res. Lett. 6, 27 (2011)

    PubMed  Google Scholar 

  69. M.D. França, L.M. Santos, T.A. Silva, K.A. Borges, V.M. Silva, A.O.T. Patrocinio, A.G. Trovó, A.E.H. Machado, J. Braz. Chem. Soc. 27(6), 1094–1102 (2016)

    Google Scholar 

  70. Y. Lin, H. Bai, C. Lin, J. Wu, Aerosol Air Qual. Res. 13, 1512–1520 (2013)

    CAS  Google Scholar 

  71. A.M. Gaudin, S.C. Sun, in Transactions of the Metallurgical Society of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME) 169, 347 (1946)

  72. J. Vergouw, A. Difeo, Z. Xu, J. Finch, Miner. Eng. 11, 159–169 (1998)

    CAS  Google Scholar 

  73. P.C. Neville, R.J. Hunter, in Proceedings of the 4th RACI Electrochemistry Conference, Adelaide, 1976) cited in ref. (Healy and Moignard, 1976)

  74. M. Ren, H. Horn, F.H. Frimmel, Water Res. 123, 678–686 (2017)

    CAS  PubMed  Google Scholar 

  75. C.G. García, R.G. Llorach, M.L. Vicent, M.A.T. Gómez, G.M. Tomás, J.A.B. March, J. Sol-Gel Sci. Technol. 50, 314–320 (2009)

    Google Scholar 

  76. O. Ola, M.M. Maroto-Valer, J. Photochem. Photobiol. C 24, 16–42 (2015)

    CAS  Google Scholar 

  77. Y. Guo, P. Wang, J. Qian, J. Hou, Y. Ao, C. Wang, Catal Sci. Technol. 8, 486–498 (2018)

    CAS  Google Scholar 

  78. S.G. Kumar, L.G. Devi, J. Phys. Chem. A 115, 13211–13241 (2011)

    CAS  PubMed  Google Scholar 

  79. R.D. Angel, J.C. Durán-Álvarez, R. Zanella (Titanium Dioxide - Material for a Sustainable Environment, Dongfang Yang, IntechOpen, 2018), https://dx.doi.org/10.5772/intechopen.76501

  80. T. Entradas, J.F. Cabrita, S. Dalui, M.R. Nunes, O.C. Monteiro, A.J. Silvestre, Mater. Chem. Phys. 147, 563 (2014)

    CAS  Google Scholar 

  81. H. Lasa, B. Serrano, M. Salaices, Photocatalytic Reaction Engineering (Springer, Berlin, 2005)

    Google Scholar 

  82. J.B. Gálvez, S.M. Rodríguez, Solar Energy Conversion and Photoenergy System. Solar photocatalysis and Water Treatment: Detoxification and disinfectation, Vol. 4. (EOLSS)/UNESCO Publishers, United Kingdom, 2010)

  83. V. Bernal, A. Erto, L. Giraldo, J. Moreno-Piraján, Molecules 22(7), 1032 (2017)

    PubMed Central  Google Scholar 

  84. Y.S. Ho, Scientometrics 59(1), 171–177 (2004)

    CAS  Google Scholar 

  85. U. Gaya, Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids, 1st edn. (Springer, Dordrecht, 2014), p. 213

    Google Scholar 

  86. R.J. Braham, A.T. Harris, Ind. Eng. Chem. Res. 48(19), 8890–8905 (2009)

    CAS  Google Scholar 

  87. C.A. Aguilar, C. Montalvo, J.G. Ceron, E. Moctezuma, Int. J. Environ. Res. 5(4), 1071–1078 (2011)

    CAS  Google Scholar 

  88. A. Desale, S.P. Kamble, M.P. Deosarkari, Int. J. Chem. Phys. Sci. 2, 141–148 (2013)

    Google Scholar 

  89. R. Karaman, M. Khamis, J. Abbadi, A. Amro, M. Qurie, I. Ayyad, F. Ayyash, O. Hamarsheh, R. Yaqmour, S. Nir, S.A. Bufo, L. Scrano, S. Lerma, S. Gur-Reznik, C.G. Dosoretz, Environ. Technol. 37(19), 2414–2427 (2016)

    CAS  PubMed  Google Scholar 

  90. T.L. Palma, M.N. Donaldben, M.C. Costa, J.D. Carlier, Water, Air Soil Pollut. 229, 200 (2018)

    Google Scholar 

  91. J. Zhang, D. Fu, Y. Xu, C. Liu, J. Environ. Sci. 22(8), 1281–1289 (2010)

    CAS  Google Scholar 

  92. N. Jallouli, K. Elghniji, H. Trabelsi, M. Ksibi, Arab. J. Chem. 10(2), S3640–S3645 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fundação para a Ciência e a Tecnologia (FCT) for funding this research through the PhD grant SFRH/BD/95075/2013, through the Centro de Ciências do Mar´s Plurianual (Project UIDB/04326/2020) and UID/QUI/00100/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Costa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palma, T.L., Vieira, B., Nunes, J. et al. Photodegradation of chloramphenicol and paracetamol using PbS/TiO2 nanocomposites produced by green synthesis. J IRAN CHEM SOC 17, 2013–2031 (2020). https://doi.org/10.1007/s13738-020-01906-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-01906-1

Keywords

Navigation