Skip to main content
Log in

Synergistic role of Brønsted and Lewis acidity in alkali metal-exchanged heteropolyacid catalysts for esterification of acetic acid at room temperature

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

A series of Cs exchanged phosphotungstic acid (PTA) catalysts were synthesized by the ion exchanged method and were characterized by X-ray diffraction, FT-IR spectroscopy, pyridine adsorbed FT-IR spectroscopy, SEM, BF-TEM, ICP-OES and BET surface area analysis. For comparison purposes, K exchanged PTA, Cs and K exchanged phosphomolybdic acid (PMA) catalysts were also prepared. XRD diffractograms showed that the crystallites of the Keggin ion are maintained, while FT-IR spectra also revealed the characteristic bands of the Keggin ion at all metal loadings of all the catalysts. From pyridine adsorbed FT-IR spectroscopy, it was observed that the Brønsted and Lewis acidity were significantly maintained at lower metal loadings, whereas STEM analysis showed a uniform distribution of the elements which correlated well with the theoretical atomic values of the loaded metals for all the catalysts, which were verified by ICP results. The efficiency of various metal-exchanged heteropolyacid catalysts was assessed for the esterification reaction using various substrates, and the Cs exchanged phosphotungstic acid catalysts showed superior activity compared to the other catalysts. In particular, the Cs exchanged phosphotungstic acid with a 1 wt% loading showed the highest activity and was most tolerant to the presence of water that was produced in the reaction. The catalytic activity correlates well with the Brønsted and Lewis acidity, as well as Keggin ion density of the catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I.V. Kozhevnikov, Chem. Rev. 98, 171 (1998)

    Article  CAS  Google Scholar 

  2. N. Mizuno, M. Misono, Chem. Rev. 98, 199 (1998)

    Article  CAS  Google Scholar 

  3. B. Viswanadham, P. Jhansi, K.V.R. Chary, H.B. Friedrich, S. Singh, Catal. Lett. 146, 364 (2016)

    Article  CAS  Google Scholar 

  4. B. Viswanadham, J. Pedada, H.B. Friedrich, S. Singh, Catal. Lett. 146, 1470 (2016)

    Article  CAS  Google Scholar 

  5. B. Viswanadham, V.P. Kumar, K.V.R. Chary, Catal. Lett. 144, 744 (2014)

    Article  CAS  Google Scholar 

  6. B. Viswanadham, A. Srikanth, K.V.R. Chary, J. Chem. Sci. 126, 445 (2014)

    Article  CAS  Google Scholar 

  7. B. Viswanadham, A. Srikanth, V.P. Kumar, K.V.R. Chary, J. Nanosci. Nanotechnol. 15, 5391 (2015)

    Article  CAS  Google Scholar 

  8. V. Balaga, J. Pedada, H.B. Friedrich, S. Singh, J. Mol. Catal. A Chem. 425, 116 (2016)

    Article  CAS  Google Scholar 

  9. W. Shi, J. Zhao, X. Yuan, S. Wang, X. Wang, M. Huo, Chem. Eng. Technol. 35, 347 (2012)

    Article  CAS  Google Scholar 

  10. M.N. Timofeeva, Appl. Catal. A Gen. 256, 19 (2003)

    Article  CAS  Google Scholar 

  11. T. Okuhara, Chem. Rev. 102, 3641 (2002)

    Article  CAS  Google Scholar 

  12. M. Tao, L. Xue, Z. Sun, S. Wang, X. Wang, J. Shi, Sci. Rep. 5, 13764 (2015)

    Article  CAS  Google Scholar 

  13. M. Misono, Catal. Today 144, 285 (2009)

    Article  CAS  Google Scholar 

  14. J. Cao, B. Qi, J. Liu, Y. Shang, H. Liu, W. Wang, J. Lu, Z. Chen, H. Zhang, X. Zhou, RSC. Adv. 6, 21612 (2016)

    Article  CAS  Google Scholar 

  15. L. Gang, L. Xinzong, W. Eli, New J. Chem. 31, 348 (2007)

    Article  Google Scholar 

  16. D. Jiang, Y.Y. Wang, L.Y. Dai, React. Kinet. Catal. Lett. 93, 257 (2008)

    Article  CAS  Google Scholar 

  17. S.T. Fardood, A. Ramazani, S. Moradi, Chem. J. Mold. 12, 115 (2017)

    Article  CAS  Google Scholar 

  18. S.T. Fardood, A. Ramazani, S. Moradi, J. Sol–Gel. Sci. Technol. 82, 432 (2017)

    Article  CAS  Google Scholar 

  19. S.T. Fardood, Z. Golfar, A. Ramazani, J. Mater. Sci. Mater. Electron. 28, 17002 (2017)

    Article  CAS  Google Scholar 

  20. S.T. Fardood, A. Ramazani, S. Moradi, P.A. Asiabi, J. Mater. Sci. Mater. Electron. 28, 13596 (2017)

    Article  Google Scholar 

  21. A. Ramazani, P.A. Asiabi, H. Aghahosseini, F. Gouranlou, Curr. Org. Chem. 21, 908 (2017)

    Article  CAS  Google Scholar 

  22. H.J. Eom, D.W. Lee, S. Kim, S.H. Chung, Y.G. Hur, K.Y. Lee, Fuel 126, 263 (2014)

    Article  CAS  Google Scholar 

  23. N.R. Shiju, H.M. Williams, D.R. Brown, Appl. Catal. B Environ. 90, 451 (2009)

    Article  CAS  Google Scholar 

  24. A. Srikanth, B. Viswanadham, V.P. Kumar, N.R. Anipindi, K.V.R. Chary, Appl. Petrochem. Res. 6, 145 (2016)

    Article  CAS  Google Scholar 

  25. T. Okuhara, H. Watanabe, T. Nishimura, K. Inumaru, M. Misono, Chem. Mater. 12, 2230 (2000)

    Article  CAS  Google Scholar 

  26. J. Kaur, I.V. Kozhevnikov, Chem. Commun. 21, 2508 (2002)

    Article  Google Scholar 

  27. M. Srinivas, G. Raveendra, G. Parameswaram, P.S.S. Prasad, N. Lingaiah, J. Mol. Catal. A Chem. 413, 7 (2016)

    Article  CAS  Google Scholar 

  28. J.A. Dias, E. Caliman, S.C.L. Dias, Microporous Mesoporous Mater. 76, 221 (2004)

    Article  CAS  Google Scholar 

  29. Y. Izumi, M. Ogawa, K. Urabe, Appl. Catal. A Gen. 132, 127 (1995)

    Article  CAS  Google Scholar 

  30. L. Pesaresi, D.R. Brown, A.F. Lee, J.M. Montero, H. Williams, K. Wilson, Appl. Catal. A Gen. 360, 50 (2009)

    Article  CAS  Google Scholar 

  31. S.S. Kale, U. Armbruster, R. Eckelt, U. Bentrup, S.B. Umbarkar, M.K. Dongare, A. Martin, Appl. Catal. A Gen. 527, 9 (2016)

    Article  CAS  Google Scholar 

  32. K. Narasimharao, D.R. Brown, A.F. Lee, A.D. Newman, P.F. Siril, S.J. Tavener, K. Wilson, J. Catal. 248, 226 (2007)

    Article  CAS  Google Scholar 

  33. H.W. Park, S. Park, D.R. Park, J.H. Choi, I.K. Song, Catal. Commun. 12, 1 (2010)

    Article  CAS  Google Scholar 

  34. L. Matachowski, A. Zieba, M. Zembala, A. Drelinkiewicz, Catal. Lett. 133, 49 (2009)

    Article  CAS  Google Scholar 

  35. N. Essayem, G. Coudurier, M. Fournier, J.C. Vedrine, Catal. Lett. 34, 223 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the University of KwaZulu-Natal, Westville for providing research facilities and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sooboo Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 453 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedada, J., Friedrich, H.B. & Singh, S. Synergistic role of Brønsted and Lewis acidity in alkali metal-exchanged heteropolyacid catalysts for esterification of acetic acid at room temperature. J IRAN CHEM SOC 15, 1411–1418 (2018). https://doi.org/10.1007/s13738-018-1341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-018-1341-z

Keywords

Navigation