Skip to main content
Log in

Light expanded clay aggregate (LECA) as a support for TiO2, Fe/TiO2, and Cu/TiO2 nanocrystalline photocatalysts: a comparative study on the structure, morphology, and activity

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this work, TiO2 and doped TiO2 photocatalysts (Fe/TiO2 and Cu/TiO2) were synthesized by the sol–gel method. The main objective of this study was to investigate the influence of dopants on the structure, morphology, and activity of the catalysts in powder and immobilized states. XRF, XRD, and SEM methods were used to characterize the catalysts. The structure and phase distribution of the nanocrystalline powders were identified by XRD. Nanoparticles crystallite size and the degree of crystallinity were affected by doping. The anatase contents of catalysts were achieved as follows: TiO2 (5.89 %) < Fe/TiO2 (42.17 %) < Cu/TiO2 (70.28 %). It was indicated that the activity of the catalysts strongly depends on the anatase content. Under the same circumstances, copper-modified TiO2 exhibited a twofold higher photocatalytic activity compared with TiO2. The nanostructured catalysts were immobilized on light expanded clay aggregate (LECA) granules in order to investigate the effect of a novel support on the activity of the catalysts. Morphological changes are recognizable in the SEM images. Activity tests indicated that the best catalytic performance was assigned to Cu/TiO2/LECA. After 120 min of irradiation, 61 % degradation of phenol in synthetic wastewater was achieved. The high photocatalytic activity of Cu/TiO2/LECA confirms that LECA is as an excellent support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Grabowska, J. Reszczynska, A. Zaleska, Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res. 46, 5453–5471 (2012). doi:10.1016/j.watres.2012.07.048

    Article  CAS  Google Scholar 

  2. S. Ahmed, M.G. Rasul, W.N. Martens, R. Brown, M.A. Hashib, Heterogeneous photocatalytic degradation of phenols in wastewater: a review on current status and developments. Desalination 261, 3–18 (2010). doi:10.1016/j.desal.2010.04.062

    Article  CAS  Google Scholar 

  3. T. Luenloi, B. Chalermsinsuwan, T. Sreethawong, Photodegradation of phenol catalyzed by TiO2 coated on acrylic sheets: kinetics and factorial design analysis. Desalination 274, 192–199 (2011). doi:10.1016/j.desal.2011.02.011

    Article  CAS  Google Scholar 

  4. S. Souzanchi, F. Vahabzadeh, S. Fazel, S.N. Hosseini, Performance of an annular sieve-plate column photoreactor using immobilized TiO2 on stainless steel support for phenol degradation. Chem. Eng. J. 223, 268–276 (2013). doi:10.1016/j.cej.2013.02.123

    Article  CAS  Google Scholar 

  5. S. Oros-Ruiz, R. Zanella, B. Prado, Photocatalytic degradation of trimethoprim by metallic nanoparticles supported on TiO2-P25. J. Hazard. Mater. 263, 28–35 (2013). doi:10.1016/j.jhazmat.2013.04.010

    Article  CAS  Google Scholar 

  6. O. Lorret, D. Francova´, G. Waldner, N. Stelzer, W-doped titania nanoparticles for UV and visible-light photocatalytic reactions. Appl. Catal. B 91, 39–46 (2009). doi:10.1016/j.apcatb.2009.05.005

    Article  CAS  Google Scholar 

  7. Y.L. Pang, A.Z. Abdullah, Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water. J. Hazard. Mater. 235–236, 326–335 (2012). doi:10.1016/j.jhazmat.2012.08.008

    Article  Google Scholar 

  8. J. Huang, S. Wang, Y. Zhao, X. Wang, S. Wang, W. Shihua, S. Zhang, W. Huang, Synthesis and characterization of CuO/TiO2 catalysts for low-temperature CO oxidation. Catal. Commun. 7, 1029–1034 (2006). doi:10.1016/j.catcom.2006.05.001

    Article  CAS  Google Scholar 

  9. H. Tedla, I.D.T. Kebede, A.M. Taddesse, Synthesis, characterization and photocatalytic activity of zeolite supported ZnO/Fe2O3/MnO2 nanocomposites. J. Environ. Chem. Eng. 3, 1586–1591 (2015). doi:10.1016/j.jece.2015.05.012

    Article  CAS  Google Scholar 

  10. C.H. Zhou, J. Keeling, Fundamental and applied research on clay minerals: from climate and environment to nanotechnology. Appl. Clay Sci. 74, 3–9 (2013). doi:10.1016/j.clay.2013.02.013

    Article  CAS  Google Scholar 

  11. A. Vaccari, Clays and catalysis: a promising future. Appl. Clay Sci. 14, 161–198 (1999). doi:10.1016/S0169-1317(98)00058-1

    Article  CAS  Google Scholar 

  12. S.A. Hassan, F.Z. Yehia, A.A. Hamed, A.A. Zahran, S.M. Solyman, Interaction characteristics controlling catalytic performances of Ni (II) and Cu (II) phthalocyanines immobilized on bentonite clay surface in redox-initiated polymerization of methyl methacrylate in aqueous medium. J. Porous Mater. 18, 1–11 (2011). doi:10.1007/s10934-009-9350-z

    Article  CAS  Google Scholar 

  13. Y. Shavisi, S. Sharifnia, M. Zendehzaban, M.L. Mirghavami, S. Kakehazar, Application of solar light for degradation of ammonia in petrochemical wastewater by a floating TiO2/LECA photocatalyst. J. Ind. Eng. Chem. 20, 2806–2813 (2014). doi:10.1016/j.jiec.2013.11.011

    Article  CAS  Google Scholar 

  14. M.N. Sepehr, H. Kazemian, E. Ghahramani, A. Amrane, V. Sivasankar e, M. Zarrabi, Defluoridation of water via light weight expanded clay aggregate (LECA): adsorbent characterization, competing ions, chemical regeneration, equilibrium and kinetic modeling. J. Taiwan Inst. Chem. Eng. 45, 1821–1834 (2014). doi:10.1016/j.jtice.2014.02.009

    Article  CAS  Google Scholar 

  15. S. Sohrabi, F. Akhlaghian, The effect of fe-loading and calcination temperature on the activity of Fe/TiO2 in phenol degradation, Iran. J. Chem. Chem. Eng. 35(2), 43–50 (2016)

    Google Scholar 

  16. F. Akhlaghian, S. Sohrabi, Fe/TiO2 catalyst for photodegradation of phenol in water. Int. J. Eng. IJE Trans. A Basics 28, 499–506 (2015). doi:10.5829/idosi.ije.2015.28.04a.02

    Google Scholar 

  17. S. Sohrabi, F. Akhlaghian, Modeling and optimization of phenol degradation over copper-doped titanium dioxide photocatalyst using response surface methodology. Process Saf. Environ. Prot. 99, 120–128 (2016). doi:10.1016/j.psep.2015.10.016

    Article  CAS  Google Scholar 

  18. L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, C.J. Lin, An electrochemical strategy of doping Fe3+ into TiO2 nanotube array films for enhancement in photocatalytic activity. Sol. Energy Mater. Sol. Cells 93, 1875–1880 (2009). doi:10.1016/j.solmat.2009.07.001

    Article  CAS  Google Scholar 

  19. M.S. Nahar, J. Zhang, K. Hasegawa, S. Kagaya, S. Kuroda, Mater. Sci. Semicond. Process. 12, 168–174 (2009). doi:10.1016/j.mssp.2009.09.011

    Article  CAS  Google Scholar 

  20. C.-H. Chiou, R.-S. Juang, Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles. J. Hazard. Mater. 149, 1–7 (2007). doi:10.1016/j.jhazmat.2007.03.035

    Article  CAS  Google Scholar 

  21. W. Qiu, Y. Zheng, A comprehensive assessment of supported titania photocatalysts in a fluidized bed photoreactor: photocatalytic activity and adherence stability. Appl. Catal. B 71, 151–162 (2007). doi:10.1016/j.apcatb.2006.08.021

    Article  CAS  Google Scholar 

  22. A. Fernández, G. Lassaletta, V.M. Jiménez, A. Justo, A.R. González-Elipe, J.-M. Herrmann, H. Tahiri, Y. Ait-Ichou, Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl. Catal. B Environ. 7, 49–63 (1995). doi:10.1016/0926-3373(95)00026-7

    Article  Google Scholar 

  23. J.G. McEvoya, W. Cuib, Z. Zhang, Degradative and disinfective properties of carbon-doped anatase–rutile TiO2 mixtures under visible light irradiation. Catal. Today 207, 191–199 (2013). doi:10.1016/j.cattod.2012.04.015

    Article  Google Scholar 

  24. D.B. Black, E.G. Lovering, Estimation of the degree of crystallinity in digoxin by X-ray and infrared methods. J. Pharm. Pharmacol. 29, 684–687 (1977). doi:10.1111/j.2042-7158.1977.tb11435.x

    Article  CAS  Google Scholar 

  25. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751–767 (1976). doi:10.1107/S0567739476001551

    Article  CAS  Google Scholar 

  26. G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Surface area and pore texture of catalysts. Catal. Today 41, 207–219 (1998). doi:10.1016/S0920-5861(98)00050-9

    Article  CAS  Google Scholar 

  27. S. Rahimnejad, S. Rahman Setayesh, M.R. Gholami, A credible role of copper oxide on structure of nanocrystalline mesoporous titanium dioxide. J. Iran. Chem. Soc. 5(3), 367–374 (2008). doi:10.1007/BF03245990

    Article  CAS  Google Scholar 

  28. E.M. Kalhori, K. Yetilmezsoy, N. Uygur, M. Zarrabi, R.M.A. Shmeis, Modeling of adsorption of toxic chromium on natural and surface modified lightweight expanded clay aggregate (LECA). Appl. Surf. Sci. 287, 428–442 (2013). doi:10.1016/j.apsusc.2013.09.175

    Article  CAS  Google Scholar 

  29. L. Amado, A. Albuquerque, A.E. Santo, Influence of stormwater infiltration on the treatment capacity of a LECA-based horizontal subsurface flow constructed wetland. Ecol. Eng. 39, 16–23 (2012). doi:10.1016/j.ecoleng.2011.11.009

    Article  Google Scholar 

  30. H. Amiri, N. Jaafarzadeh, M. Ahmadi, S.S. Martínez, Application of LECA modified with Fenton in arsenite and arsenate removal as an adsorbent. Desalination 272, 212–217 (2011). doi:10.1016/j.desal.2011.01.018

    Article  CAS  Google Scholar 

  31. S.B. Bonabi, J.K. Khabushan, R. Kahani, A.H. Raouf, Fabrication of metallic composite foam using ceramic porous spheres “Light Expanded Clay Aggregate” via casting process. Mater. Des. 64, 310–315 (2014). doi:10.1016/j.matdes.2014.07.061

    Article  Google Scholar 

  32. R.K. Tabase, D. Liu, A. Feilberg, Chemisorption of hydrogen sulphide and methanethiol by light expanded clay aggregates (Leca). Chemosphere 93, 1345–1351 (2013). doi:10.1016/j.chemosphere.2013.07.068

    Article  CAS  Google Scholar 

  33. M.A. Nkansah, A.A. Christy, T. Barth, G.W. Francis, The use of lightweight expanded clay aggregate (LECA) as sorbent for PAHs removal from water. J. Hazard. Mater. 217–218, 360–365 (2012). doi:10.1016/j.jhazmat.2012.03.038

    Article  Google Scholar 

  34. M. Malakootian, J. Nouri, H. Hossaini, Removal of heavy metals from paint industry’s wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Technol. 6, 183–190 (2009). doi:10.1007/BF03327620

    Article  CAS  Google Scholar 

  35. S.-Y. Lee, S.-J. Park, TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 19, 1761–1769 (2013). doi:10.1016/j.jiec.2013.07.012

    Article  CAS  Google Scholar 

  36. H.J. Choi, M. Kang, Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2. Int. J. Hydrog. Energy 32, 3841–3848 (2007). doi:10.1016/j.ijhydene.2007.05.011

    Article  CAS  Google Scholar 

  37. T. Sato, M. Taya, Copper-aided photo-sterilization of microbial cells on TiO2 film under irradiation from a white light fluorescent lamp. Biochem. Eng. J. 30, 199–204 (2006). doi:10.1016/j.jeurceramsoc.2009.04.016

    Article  CAS  Google Scholar 

  38. H.W.P. Carvalhoa, A.P.L. Batistab, P. Hammer, T.C. Ramalho, Photocatalytic degradation of methylene blue by TiO2–Cu thin films: theoretical and experimental study. J. Hazard. Mater. 184, 273–280 (2010). doi:10.1016/j.jhazmat.2010.08.033

    Article  Google Scholar 

  39. T. Sreethawong, S. Yoshikawa, Immobilization of TiO2 and Fe–C–TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water. Catal. Commun. 6, 661–668 (2005). doi:10.1016/j.catcom.2005.06.004

    Article  CAS  Google Scholar 

  40. B. Tryba, Immobilization of TiO2 and Fe–C–TiO2 photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water. J. Hazard. Mater. 151, 623–627 (2008). doi:10.1016/j.jhazmat.2007.06.034

    Article  CAS  Google Scholar 

  41. C.L. Suen, A. Adesina, Aqueous phase oxidative degradation of 4-hydroxy nitrobenzene over a CuO–TiO2 Catalyst. Asia Pac. J. Chem. Eng. 6, 85–100 (1998). doi:10.1002/apj.5500060106

    Google Scholar 

  42. A.Y. Shan, T.I.M. Ghazi, S.A. Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl. Catal. A Gen. 389, 1–8 (2010). doi:10.1016/j.apcata.2010.08.053

    Article  CAS  Google Scholar 

  43. S. Singh, H. Mahalingam, P.K. Singh, Polymer-supported titanium dioxide photocatalysts for environmental remediation: a review. Appl. Catal. A Gen. 462–463, 178–195 (2013). doi:10.1016/j.apcata.2013.04.039

    Article  Google Scholar 

  44. A. Nezamzadeh-Ejhieh, Z. Salimi, Heterogeneous photodegradation catalysis of o-phenylenediamine using CuO/X zeolite. Appl. Catal. A 390, 110–118 (2010). doi:10.1016/j.apcata.2010.09.038

    Article  CAS  Google Scholar 

  45. Z. Sun, Y. Yan, G. Zhang, W. Zhaoyang, S. Zheng, The influence of carriers on the structure and photocatalytic activity of TiO2/diatomite composite photocatalysts. Adv. Powder Technol. 26, 595–601 (2015). doi:10.1016/j.apt.2015.01.007

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from University of Kurdistan is gratefully acknowledged. In addition, the authors would like to thank “Dr. Sharam Sharifnia, Assistant Professor, Department of Chemical Engineering, Faculty Engineering, Razi University, for providing LECA” and “Mr. Mohamad Rahmani, Forest Biology Laboratory instructor and supervisor of the Department of Natural Resources of University of Kurdistan, for his kind cooperation.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Sohrabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, S., Akhlaghian, F. Light expanded clay aggregate (LECA) as a support for TiO2, Fe/TiO2, and Cu/TiO2 nanocrystalline photocatalysts: a comparative study on the structure, morphology, and activity. J IRAN CHEM SOC 13, 1785–1796 (2016). https://doi.org/10.1007/s13738-016-0896-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0896-9

Keywords

Navigation