Skip to main content
Log in

Transport properties of methane, ethane, propane, iso-butane and neo-pentane from ab initio potential energy surfaces

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

In this work, the potential energy surfaces for methane, ethane, propane, iso-butane and neo-pentane, obtained from the ab initio calculations via different levels of electron-correlation, were used in the framework of the kinetic theory to calculate the transport collision integrals and their corresponding low-density transport coefficients. The theoretical results are compared with the available experimental data and the effective scaling potential parameters of methane, ethane, propane, iso-butane and neo-pentane along with the kinetic theory collision integrals and higher order correction factors were obtained. Relation between different potentials and kinetic theory collision integrals are discussed and it was shown that the Mason–Monchick approach is a reliable approximation in the calculation of diffusion coefficients and shear viscosities of chain alkanes, whereas the full predictive Boltzmann weighting method is successful only for lighter alkanes, such as methane and ethane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. Hellmann, E. Bich, E. Vogel, J. Chem. Phys. 128, 214303 (2008)

    Article  Google Scholar 

  2. S.-W. Chao, A.H.-T. Li, S.D. Chao, J. Comput. Chem. 30, 1839 (2009)

    Article  CAS  Google Scholar 

  3. J.M. Hayes, J.C. Greer, D.A. Morton-Blake, J. Comput. Chem. 25, 1953 (2004)

    Article  CAS  Google Scholar 

  4. J.-P. Jalkanen, R. Mahlanen, T.A. Pakkanen, R.L. Rowley, J. Chem. Phys. 116, 1303 (2002)

    Article  CAS  Google Scholar 

  5. J.-P. Jalkanen, T.A. Pakkanen, Y. Yang, R.L. Rowley, J. Chem. Phys. 118, 5474 (2003)

    Article  CAS  Google Scholar 

  6. R.L. Rowley, T. Pakkanen, J. Chem. Phys. 110, 3368 (1999)

    Article  CAS  Google Scholar 

  7. R.L. Rowley, Y. Yang, T.A. Pakkanen, J. Chem. Phys. 114, 6058 (2001)

    Article  CAS  Google Scholar 

  8. S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, J. Chem. Phys. 124, 114304 (2006)

    Article  Google Scholar 

  9. J.-P. Jalkanen, T.A. Pakkanen, R.L. Rowley, J. Chem. Phys. 120, 1705 (2004)

    Article  CAS  Google Scholar 

  10. S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, J. Phys. Chem. A 108, 10311 (2004)

    Article  CAS  Google Scholar 

  11. S. Tsuzuki, T. Uchimaru, M. Mikami, K. Tanabe, J. Phys. Chem. A 106, 3867 (2002)

    Article  CAS  Google Scholar 

  12. P. Hobza, H.L. Selzle, E.W. Schlag, J. Am. Chem. Soc. 116, 3500 (1994)

    Article  CAS  Google Scholar 

  13. B.F. Shchegolev, M.L. McKee, A.V. Zhuravlev, E.V. Savvateeva-Popova, Biophysics 58, 355 (2013)

    Article  CAS  Google Scholar 

  14. M. Kołaski, C.R. Arunkumar, K.S. Kim, J. Chem. Theory Comput. 9, 847 (2012)

    Article  Google Scholar 

  15. B. Sütay, A. Tekin, M. Yurtsever, Theor. Chem. Acc. 131, 1 (2012)

    Article  Google Scholar 

  16. C. Zhang, J. Comput. Chem. 32, 152 (2011)

    Article  Google Scholar 

  17. C. Feng, C. Lin, X. Zhang, R. Zhang, J. Theor. Comput. Chem. 09, 109 (2010)

    Article  CAS  Google Scholar 

  18. S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, J. Chem. Phys. 122, 144323 (2005)

    Article  Google Scholar 

  19. S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, J. Chem. Phys. 120, 647 (2004)

    Article  CAS  Google Scholar 

  20. S. Tsuzuki, T. Uchimaru, K. Tanabe, Chem. Phys. Lett. 287, 327 (1998)

    Article  CAS  Google Scholar 

  21. S. Tsuzuki, T. Uchimaru, K. Tanabe, Chem. Phys. Lett. 287, 202 (1998)

    Article  CAS  Google Scholar 

  22. S. Tsuzuki, K. Tanabe, J. Phys. Chem. 95, 2272 (1991)

    Article  CAS  Google Scholar 

  23. S. Tsuzuki, T. Uchimaru, K. Tanabe, Chem. Phys. Lett. 246, 9 (1995)

    Article  CAS  Google Scholar 

  24. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd edn. (Cambridge University Press, London, 1970)

    Google Scholar 

  25. L. Monchick, E.A. Mason, J. Chem. Phys. 35, 1676 (1961)

    Article  CAS  Google Scholar 

  26. E.A. Mason, L. Monchick, J. Chem. Phys. 36, 1622 (1962)

    Article  CAS  Google Scholar 

  27. E.L. Heck, A.S. Dickinson, V. Vesovic, Chem. Phys. Lett. 204, 389 (1993)

    Article  CAS  Google Scholar 

  28. E.L. Heck, A.S. Dickinson, V. Vesovic, Chem. Phys. Lett. 240, 151 (1995)

    Article  CAS  Google Scholar 

  29. M.H.K. Jafari, A. Maghari, Int. J. Thermophys. 27, 1449 (2006)

    Article  CAS  Google Scholar 

  30. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids, 2nd edn. (Wiley, New York, 1964)

    Google Scholar 

  31. L.A. Viehland, Y. Chang, Comput. Phys. Commun. 181, 1687 (2010)

    Article  CAS  Google Scholar 

  32. L.A. Viehland, A.R. Janzen, R.A. Aziz, J. Chem. Phys. 102, 5444 (1995)

    Article  CAS  Google Scholar 

  33. J. Kestin, S.T. Ro, W.A. Wakeham, Trans. Faraday Soc. 67, 2308 (1971)

    Article  CAS  Google Scholar 

  34. J. Kestin, H.E. Khalifa, S.T. Ro, W.A. Wakeham, Phys. A 88, 242 (1977)

    Article  Google Scholar 

  35. J. Kestin, J. Yata, J. Chem. Phys. 49, 4780 (1968)

    Article  CAS  Google Scholar 

  36. E. May, R. Berg, M. Moldover, Int. J. Thermophys. 28, 1085 (2007)

    Article  CAS  Google Scholar 

  37. R.F. Berg, E.F. May, M.R. Moldover, J. Chem. Eng. Data 59, 116 (2013)

    Article  Google Scholar 

  38. J.M. Hellemans, J. Kestin, S.T. Ro, Physica 65, 376 (1973)

    Article  CAS  Google Scholar 

  39. Y. Abe, J. Kestin, H.E. Khalifa, W.A. Wakeham, Phys. A 93, 155 (1978)

    Article  Google Scholar 

  40. J. Kestin, H.E. Khalifa, W.A. Wakeham, J. Chem. Phys. 67, 4254 (1977)

    Article  CAS  Google Scholar 

  41. A.G. Clarke, E.B. Smith, J. Chem. Phys. 51, 4156 (1969)

    Article  CAS  Google Scholar 

  42. G.C. Maitland, E.B. Smith, J. Chem. Soc. Farad. T. 1(70), 1191 (1974)

    Article  Google Scholar 

  43. R.A. Dawe, G.C. Maitland, M. Rigby, E.B. Smith, Trans. Faraday Soc. 66, 1955 (1970)

    Article  CAS  Google Scholar 

  44. J. Kestin, H.E. Khalifa, W.A. Wakeham, J. Chem. Phys. 66, 1132 (1977)

    Article  CAS  Google Scholar 

  45. E. Vogel, J. Chem. Eng. Data 56, 3265 (2011)

    Article  CAS  Google Scholar 

  46. P. Schley, M. Jaeschke, C. Küchenmeister, E. Vogel, Int. J. Thermophys. 25, 1623 (2004)

    Article  CAS  Google Scholar 

  47. D.W. Gough, G.P. Matthews, E.B. Smith, J. Chem. Soc. Faraday T. 1(72), 645 (1976)

    Article  Google Scholar 

  48. Y. Abe, J. Kestin, H.E. Khalifa, W.A. Wakeham, Ber. Bunsenges. Phys. Chem. 83, 271 (1979)

    Article  CAS  Google Scholar 

  49. S. Hendl, E. Vogel, Fluid Phase Equilib. 76, 259 (1992)

    Article  CAS  Google Scholar 

  50. Y. Abe, J. Kestin, H.E. Khalifa, W.A. Wakeham, Phys. A 97, 296 (1979)

    Article  Google Scholar 

  51. C. Küchenmeister, E. Vogel, Int. J. Thermophys. 21, 329 (2000)

    Article  Google Scholar 

  52. E. Vogel, B. Holdt, T. Strehlow, Phys. A 148, 46 (1988)

    Article  Google Scholar 

  53. E.B. Winn, Phys. Rev. 80, 1024 (1950)

    Article  CAS  Google Scholar 

  54. C.R. Mueller, R.W. Cahill, J. Chem. Phys. 40, 651 (1964)

    Article  CAS  Google Scholar 

  55. R. Dawson, F. Khoury, R. Kobayashi, AlChE J. 16, 725 (1970)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Maghari.

Electronic supplementary material

Below is the link to the electronic supplementary material. Online Resource 1 is a pdf file which contains some discussions about the potentials corresponding to Figs. 1 and 2 of this article.

Supplementary material 1 (PDF 551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati-Kande, E., Maghari, A. Transport properties of methane, ethane, propane, iso-butane and neo-pentane from ab initio potential energy surfaces. J IRAN CHEM SOC 13, 1225–1233 (2016). https://doi.org/10.1007/s13738-016-0837-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-0837-7

Keywords

Navigation