Skip to main content
Log in

A novel pectin/cerium (IV) silicomolybdate-based nanocomposite ion exchanger: preparation, characterization, and applications

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Hybrid ion exchangers with high ion exchange capacity (IEC), good stability, and good selectivity for heavy metals formed through a polymer material into an inorganic ion exchanger have always attracted the attention of researchers. In this work, a novel nanocomposite ion exchanger made of pectin and cerium (IV) silicomolybdate (CSM) was synthesized by precipitation technique and used for separating heavy metals and eliminating bacterial pollutants from water systems. The structural and morphological investigation of the synthesized pectin–cerium (IV) silicomolybdate (PCSM) was achieved by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) techniques, whereas, its chemical characterization was performed by energy-dispersive X-ray (EDX) spectroscopy. The IEC, and chemical and thermal stability of the composite were also determined to understand the composite material's properties. The IEC of the PCSM and CSM was 2.56 and 1.78 milli equivalents per g, respectively. PCSM exhibited chemical stability against different chemical solutions and was thermally stable at 600 °C and retained 24.21% of its initial IEC. The distribution coefficient (Kd) values of the numerous investigated metallic ions were assessed using different solvents to determine the composite's ion exchange characteristics. The distribution study indicated that PCSM was more selective toward Cr3+ ions. In addition, it was found to be effective for the separation of Cr3+ ions from binary metal ion mixtures such as Cd2+–Cr3+, Pb2+–Cr3+, Ni2+–Cr3+, and Co2+–Cr3+. PCSM has also shown antibacterial activity against Gram-negative bacteria Escherichia coli.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Baban A, Yediler A, Ciliz NK (2010) Integrated water management and CP implementation for wool and textile blend processes. Clean: Soil, Air, Water 38:84–90. https://doi.org/10.1002/clen.200900102

    Article  CAS  Google Scholar 

  2. Zaharia C, Suteu D, Muresan A, Muresan R, Popescu A (2009) Textile wastewater treatment by homogeneous oxidation with hydrogen peroxide. Environ Eng Manag J 8:1359–1369. https://doi.org/10.30638/EEMJ.2009.199

    Article  CAS  Google Scholar 

  3. Sekar M, Sakthi V, Rengaraj S (2004) Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. J Colloid Interface Sci 279:307–313. https://doi.org/10.1016/j.jcis.2004.06.042

    Article  CAS  PubMed  Google Scholar 

  4. Gürkan R, Ulusoy HI, Akçay M (2017) Simultaneous determination of dissolved inorganic chromium species in wastewater/natural waters by surfactant sensitized catalytic kinetic spectrophotometry. Arab J Chem 10:S450–S460. https://doi.org/10.1016/j.arabjc.2012.10.005

    Article  CAS  Google Scholar 

  5. Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347. https://doi.org/10.1016/S0168-6445(01)00057-2

    Article  CAS  PubMed  Google Scholar 

  6. Shah A, Khuhawar MY, Shah AA (2012) Evaluation of sorption behavior of polymethylene-bis (2-hydroxybenzaldehyde) for Cu(II), Ni(II), Fe(III), Co(II) and Cd(II) ions. Iran Polym J 21:325–334. https://doi.org/10.1007/s13726-012-0033-2

    Article  CAS  Google Scholar 

  7. Akar ST, Akar T, Kaynak Z, Anilan B, Cabuk A, Tabak O, Demir TA, Gedikbey T (2009) Removal of copper (II) ions from synthetic solution and real wastewater by the combined action of dried Trametes versicolor cells and montmorillonite. Hydrometallurgy 97:98–104. https://doi.org/10.1016/j.hydromet.2009.01.009

    Article  CAS  Google Scholar 

  8. Amuda OS, Amoo IA (2007) Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J Hazard Mater 141:778–783. https://doi.org/10.1016/j.jhazmat.2006.07.044

    Article  CAS  PubMed  Google Scholar 

  9. Agustina TE, Ang HM, Vareek VK (2005) A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J Photochem Photobiol C Photochem Rev 6:264–273. https://doi.org/10.1016/j.jphotochemrev.2005.12.003

    Article  CAS  Google Scholar 

  10. Preetha B, Janardan C (2016) Kinetic studies on novel cation exchangers, antimony zirconium phosphate (SbZP) and antimony zirconium triethylammonium phosphate (SbZTP). Desalination Water Treat 57:6268–6277. https://doi.org/10.1080/19443994.2015.1005689

    Article  CAS  Google Scholar 

  11. Varshney KG, Khan MA (2019) Amorphous inorganic ion exchangers. Inorganic ion exchangers in chemical analysis. CRC Press, Boca Raton. https://doi.org/10.1201/9780203750780

    Chapter  Google Scholar 

  12. Tiravanti G, Petruzzelli D, Passino R (1997) Pretreatment of tannery waste waters by an ion exchange process for Cr (III) removal and recovery. Water Sci Technol 36:197–207. https://doi.org/10.1016/S0273-1223(97)00388-0

    Article  CAS  Google Scholar 

  13. Thakur M, Pathania D (2018) Fabrication of gelatin-Zr (IV) phosphate and alginate-Zr (IV) phosphate nanocomposite based ion selective membrane electrode. Nano Hybrid Compos 20:108–120. https://doi.org/10.4028/www.scientific.net/NHC.20.108

    Article  Google Scholar 

  14. Sharma G, Pathania D, Naushad M (2014) Preparation, characterization and antimicrobial activity of biopolymer based nanocomposite ion exchanger pectin zirconium(IV) selenotungstophosphate: application for removal of toxic metals. J Ind Eng Chem 20:4482–4490. https://doi.org/10.1016/j.jiec.2014.02.020

    Article  CAS  Google Scholar 

  15. Siddiqui WA, Khan SA, Inamuddin (2007) Synthesis, characterization and ion-exchange properties of a new and novel ‘organic-inorganic’ hybrid cation-exchanger: poly(methyl methacrylate) Zr(IV) phosphate. Colloids Surf A Physicochem Eng Asp 295:193–199. https://doi.org/10.1016/j.colsurfa.2006.08.053

    Article  CAS  Google Scholar 

  16. Ahmad N, Kausar A, Muhammad B (2016) Structure and properties of 4-aminobenzoic acid modified polyvinyl chloride and functionalized graphite-based membranes. Fuller Nanotubes Carbon Nanostructures 24:75–81. https://doi.org/10.1080/1536383X.2015.1118620

    Article  CAS  Google Scholar 

  17. Gupta VK, Agarwal S, Pathania D, Kothiyal NC, Sharma G (2013) Use of pectin-thorium (IV) tungstomolybdate nanocomposite for photocatalytic degradation of methylene blue. Carbohydr Polym 96:277–283. https://doi.org/10.1016/j.carbpol.2013.03.073

    Article  CAS  PubMed  Google Scholar 

  18. Varshney KG, Agrawal A, Mojumdar S (2007) Pyridine based thorium(IV) phosphate hybrid fibrous ion exchanger. J Therm Anal Calorim 90:721–724. https://doi.org/10.1007/s10973-007-8258-6

    Article  CAS  Google Scholar 

  19. Clearfield A (1982) Inorganic ion exchange materials. CRC Press, Boca Raton. https://doi.org/10.1201/9781351073561

    Book  Google Scholar 

  20. Alam Z, Inamuddin NSA (2010) Synthesis and characterization of a thermally stable strongly acidic Cd(II) ion selective composite cation-exchanger: polyaniline Ce(IV) molybdate. Desalination 250:515–522. https://doi.org/10.1016/j.desal.2008.09.008

    Article  CAS  Google Scholar 

  21. Laiq E, Nabi SA (2021) Preparation, characterization and analytical application of tin (IV) tungstoselenate-1, 10 phenanthroline. Orient J Chem 37:997–1001. https://doi.org/10.13005/ojc/370430

    Article  CAS  Google Scholar 

  22. Nataraj SK, Hosamani KM, Aminabhavi TM (2006) Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Water Res 40:2349–2356. https://doi.org/10.1016/j.watres.2006.04.022

    Article  CAS  PubMed  Google Scholar 

  23. Sirajuddin, Gupta V, Sharma G, Kumar A, Stadler FJ, Inamuddin (2019) Preparation and characterization of gum acacia/Ce(IV)MoPO4 nanocomposite ion exchanger for photocatalytic degradation of methyl violet dye. J Inorg Organomet Polym Mater 29:1171–1183. https://doi.org/10.1007/s10904-019-01080-9

    Article  CAS  Google Scholar 

  24. Kaur K, Jindal R, Tanwar R (2019) Chitosan-gelatin @ Tin (IV) tungstatophosphate nanocomposite ion exchanger: synthesis, characterization and applications in environmental remediation. J Polym Environ 27:19–36. https://doi.org/10.1007/s10924-018-1321-5

    Article  CAS  Google Scholar 

  25. Gupta VK, Agarwal S, Tyagi I, Pathania D, Rathore BS, Sharma G (2015) Synthesis, characterization and analytical application of cellulose acetate-tin (IV) molybdate nanocomposite ion exchanger: binary separation of heavy metal ions and antimicrobial activity. Ionics 21:2069–2078. https://doi.org/10.1007/s11581-015-1368-4

    Article  CAS  Google Scholar 

  26. Gupta VK, Sharma G, Pathania D, Kothiyal NC (2015) Nanocomposite pectin Zr(IV) selenotungstophosphate for adsorptional/photocatalytic remediation of methylene blue and malachite green dyes from aqueous system. J Ind Eng Chem 21:957–964. https://doi.org/10.1016/j.jiec.2014.05.001

    Article  CAS  Google Scholar 

  27. Wang R, Liang R, Dai T, Chen J, Shuai X, Liu C (2019) Pectin-based adsorbents for heavy metal ions: a review. Trends Food Sci Technol 91:319–329. https://doi.org/10.1016/j.tifs.2019.07.033

    Article  CAS  Google Scholar 

  28. Ahmad N, Kausar A, Muhammad B (2016) Perspectives on polyvinyl chloride and carbon nanofiller composite: a review. Polym Plast Technol Eng 55:1076–1098. https://doi.org/10.1080/03602559.2016.1163587

    Article  CAS  Google Scholar 

  29. Gupta VK, Pathania D, Singh P (2014) Pectin-cerium (IV) tungstate nanocomposite and its adsorptional activity for removal of methylene blue dye. Int J Environ Sci Technol 11:2015–2024. https://doi.org/10.1007/s13762-013-0351-8

    Article  CAS  Google Scholar 

  30. Pathania D, Sharma G, Naushad M, Priya V (2016) A biopolymer-based hybrid cation exchanger pectin cerium (IV) iodate: synthesis, characterization, and analytical applications. Desalination Water Treat 57:468–475. https://doi.org/10.1080/19443994.2014.967731

    Article  CAS  Google Scholar 

  31. Pathania D, Sharma G, Thakur R (2015) Pectin @ zirconium (IV) silicophosphate nanocomposite ion exchanger: photocatalysis, heavy metal separation and antibacterial activity. Chem Eng J 267:235–244. https://doi.org/10.1016/j.cej.2015.01.004

    Article  CAS  Google Scholar 

  32. Laiq E, Shahid N (2021) Antimicrobial activities of Schiff base metal complexes of first transition series. Biosci Biotechnol Res Asia 18:575–583. https://doi.org/10.13005/bbra/2941

    Article  Google Scholar 

  33. Khan MMA, Rafiuddin I (2014) Synthesis, characterization, thermal behaviour and transport properties of polyvinyl chloride based zirconium phosphate composite membrane. J Environ Chem Eng 2:471–476. https://doi.org/10.1016/j.jece.2014.01.019

    Article  CAS  Google Scholar 

  34. Sharma G, Pathania D, Naushad M, Kothiyal NC (2014) Fabrication, characterization and antimicrobial activity of polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: efficient removal of toxic metal ions from water. Chem Eng J 251:413–421. https://doi.org/10.1016/j.cej.2014.04.074

    Article  CAS  Google Scholar 

  35. Chithra PG, Raveendran R, Beena B (2008) Parachlorophenol anchored tin antimonite: an inorgano-organic ion-exchanger selective towards heavy metals like Bi(III) and Cu(II). Desalination 232:20–25. https://doi.org/10.1016/j.desal.2008.01.006

    Article  CAS  Google Scholar 

  36. Nimisha KV, Mohan A, Janardanann C (2016) Pectin-tin(IV) molybdosilicate: an ecofriendly cationic exchanger and its potential for sorption of heavy metals from aqueous solutions. Resour Effic Technol 2:S153–S164. https://doi.org/10.1016/j.reffit.2016.11.016

    Article  Google Scholar 

  37. Sharma P, Jindal R, Maiti M, Jana AK (2016) Novel organic-inorganic composite material as a cation exchanger from a triterpenoidal system of dammar gum: synthesis, characterization and application. Iran Polym J 25:671–685. https://doi.org/10.1007/s13726-016-0456-2

    Article  CAS  Google Scholar 

  38. Abd El-Latif MM, El-kady MF (2011) Synthesis, characterization and evaluation of nano-zirconium vanadate ion exchanger by using three different techniques. Mater Res Bull 46:105–118. https://doi.org/10.1016/j.materresbull.2010.09.032

    Article  CAS  Google Scholar 

  39. Patel PR, Chudasama UV (2014) Separations of lanthanides and actinides using novel hybrid ion exchange materials, M (IV) phosphonates. Desalination Water Treat 52:481–489. https://doi.org/10.1080/19443994.2013.808796

    Article  CAS  Google Scholar 

  40. Taddesse AM, Ketema TT, Teju E (2020) Cellulose acetate-Sn(IV) molybdophosphate: a biopolymer supported composite exchanger for the removal of selected heavy metal ions. Bull Chem Soc Ethiop 34:259–276. https://doi.org/10.4314/bcse.v34i2.5

    Article  CAS  Google Scholar 

  41. Verma M, Biswal AK, Dhingra S, Gupta A, Saha S (2019) Antibacterial response of polylactide surfaces modified with hydrophilic polymer brushes. Iran Polym J 28:493–504. https://doi.org/10.1007/s13726-019-00717-3

    Article  CAS  Google Scholar 

  42. Ahmad N, Mahmood T (2022) Preparation and properties of 4-aminobenzoic acid-modified polyvinyl chloride/titanium dioxide and PVC/TiO2 based nanocomposites membranes. Polym Polym Compos 30:1–12. https://doi.org/10.1177/09673911221099301

    Article  CAS  Google Scholar 

  43. Sadeek SA, Ali IM (2016) Polyaniline based cerium phosphosilicate: synthesis, characterization and diffusion mechanism of La (III) in aqueous solutions. Bull Fac Sci Zagazig Univ 1:18–35. https://doi.org/10.21608/bfszu.2016.31063

    Article  Google Scholar 

  44. Megahed M, Abd El-baky MA, Alsaeedy AM, Alshorbagy AE (2021) Synthesis effect of nano-fillers on the damage resistance of GLARE. Fibers Polym 22:1366–1377. https://doi.org/10.1007/s12221-021-0570-4

    Article  CAS  Google Scholar 

  45. Melaibari AA, Attia MA, Abd El-baky MA (2021) Understanding the effect of halloysite nanotubes addition upon the mechanical properties of glass fiber aluminum laminate. Fibers Polym 22:1416–1433. https://doi.org/10.1007/s12221-021-0656-z

    Article  CAS  Google Scholar 

  46. Saber D, Abd El-baky MA, Attia MA (2021) Advanced fiber metal laminates filled with silicon dioxide nanoparticles with enhanced mechanical properties. Fibers Polym 22:2447–2463. https://doi.org/10.1007/s12221-021-0192-x

    Article  CAS  Google Scholar 

  47. Velmurugan G, Ahamed KR, Azarudeen RS (2015) A novel comparative study: synthesis, characterization and thermal degradation kinetics of a terpolymer and its composite for the removal of heavy metals. Iran Polym J 24:229–242. https://doi.org/10.1007/s13726-015-0315-6

    Article  CAS  Google Scholar 

  48. Thakkar R, Chudasama U (2009) Synthesis and characterization of zirconium titanium phosphate and its application in separation of metal ions. J Hazard Mater 172:129–137. https://doi.org/10.1016/j.jhazmat.2009.06.154

    Article  CAS  PubMed  Google Scholar 

  49. Patel P, Chudasama U (2011) Synthesis and characterization of a novel hybrid cation exchange material and its application in metal ion separations. Ion Exch Lett 4:7–15. https://doi.org/10.3260/iel.2011.06.002

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the research facilities provided by the Chairperson, Department of Chemistry, Aligarh Muslim University Aligarh, India. The writers appreciate the scholarship and contingency funded by University Grants Commission (UGC), New Delhi. One of the authors is grateful for the funds, the UGC start-up grant provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmat Laiq.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Laiq, E. & Meraj, U. A novel pectin/cerium (IV) silicomolybdate-based nanocomposite ion exchanger: preparation, characterization, and applications. Iran Polym J 32, 1551–1565 (2023). https://doi.org/10.1007/s13726-023-01223-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01223-3

Keywords

Navigation