Skip to main content
Log in

Radical polymerization of methyl methacrylate in the presence of methylene blue and organobromides under visible light irradiation

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The visible light-induced polymerization of methyl methacrylate in the presence of methylene blue as a photocatalyst and various bromine-containing organic compounds was first investigated. It was shown that polymerization may be successfully initiated even at low concentrations of methylene blue using conventional LED strips. The polymerization rate and the dependency of molecular weight parameters of the samples on monomer conversion are governed by the nature of light source as well as the structure of the initiator and introducing additional reagents. The use of warm white light seems to be more favorable for conducting the process to high conversions. Electron-donating additives such as aliphatic amines or formic acid accelerate the polymerization and determine the linear increase of molecular weight of the samples with the conversion growth typical for reversible deactivated radical polymerization. The performed quantum-chemical calculations and experimental studies show that the simultaneous realization of the metal-free atom transfer radical polymerization and light-induced stable free radical polymerization mechanisms is possible under the light irradiation. The simultaneous realization of two different processes determines the linear growth of the polymer chain upon conversion but results in average control over molecular weight distribution of the obtained samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1.

Similar content being viewed by others

References

  1. Buzzetti L, Crisenza GEM, Melchiorre P (2019) Mechanistic studies in photocatalysis. Angew Chem Int Ed 58:3730–3747

    Article  CAS  Google Scholar 

  2. Zhu SS, Wang DW (2017) Photocatalysis: basic principles, diverse forms of implementations and emerging scientific opportunities. Adv Energy Mat 7:1700841

    Article  CAS  Google Scholar 

  3. Xia Q, Dong JY, Song HJ, Wang QM (2019) Visible-light photocatalysis of the ketyl radical coupling reaction. Chem Eur J 25:2949–2961

    CAS  PubMed  Google Scholar 

  4. Treat NJ, Fors BP, Kramer JW, Christianson M, Chiu CY, de Alaniz JR, Hawker CJ (2014) Controlled radical polymerization of acrylates regulated by visible light. ACS Macro Lett 3:580–584

    Article  CAS  PubMed  Google Scholar 

  5. Spasiano D, Marotta R, Malato S, Fernandez-Ibanez P, Di Somma I (2015) Solar photocatalysis: materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl Cat B Environ 170:90–123

    Article  CAS  Google Scholar 

  6. Hong BC (2020) Enantioselective synthesis enabled by visible light photocatalysis. Org Biomol Chem 23:4298–4353

    Article  Google Scholar 

  7. Borodkin GI, Shubin VG (2019) Progress and prospects in the use of photocatalysis for the synthesis of organofluorine compounds. Russ Chem Rev 88:160–203

    Article  CAS  Google Scholar 

  8. Harlow JE, Rueggeberg FA, Labrie D, Sullivan B, Price RB (2016) Transmission of violet and blue light through conventional (layered) and bulk cured resin-based composites. J Dent 53:44–50

    Article  CAS  PubMed  Google Scholar 

  9. Kreutzer K, Yagci Y (2018) Metal free reversible-deactivation radical polymerizations: advances, challenges, and opportunities. Polymers 10:35

    Article  CAS  Google Scholar 

  10. Wang GX, Lu M, Zhou MJ, Liang EX, He BH (2018) Photo-induced ATRP of MMA under blue light irradiation in the presence of 3,4,9,10-tetra-(12-alkoxycarbonyl)-perylene as a photocatalyst. Iran Polym J 27:43–48

    Article  CAS  Google Scholar 

  11. Allushi A, Kutahya C, Aydogan C, Kreutzer J, Yilmaz G, Yagci Y (2017) Conventional type II photoinitiators as activators for photoinduced metal-free atom transfer radical polymerization. Polym Chem 8:1972–1977

    Article  CAS  Google Scholar 

  12. Zaborniak I, Macior A, Chmielarz P, Najarro MC, Iruthayaraj J (2021) Lignin-based thermoresponsive macromolecules via vitamin-induced metal-free ATRP. Polymer 219:123537

    Article  CAS  Google Scholar 

  13. Zeng LL, Xie WY, Yang CX, Liang EX, Wang GX (2018) Photomediated atom transfer radical polymerization of MMA under long-wavelength light irradiation. Iran Polym J 27:881–887

    Article  CAS  Google Scholar 

  14. Pearson RM, Lim CH, McCarthy BG, Musgrave CB, Miyake GM (2016) Organocatalyzed atom transfer radical polymerization using n-aryl phenoxazines as photoredox catalysts. J Am Chem Soc 138:11399–11407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pan X, Fang C, Fantin M, Malhotra N, So WY, Peteanu LA, Isse AA, Gennaro A, Liu P, Matyjaszewski K (2016) Mechanism of photoinduced metal-free atom transfer radical polymerization: experimental and computational studies. J Am Chem Soc 138:2411–2425

    Article  CAS  PubMed  Google Scholar 

  16. Miyake GM, Theriot JC (2014) Perylene as an organic photocatalyst for the radical polymerization of functionalized vinyl monomers through oxidative quenching with alkyl bromides and visible light. Macromolecules 47:8255–8261

    Article  CAS  Google Scholar 

  17. Ma Q, Zhang X, Jia L, Liao S (2019) BINOLs as visible light photocatalysts for metal-free atom transfer radical polymerization. Polym Chem 10:6662–6668

    Article  CAS  Google Scholar 

  18. Buss BL, Beck LR, Miyake GM (2018) Synthesis of star polymers using organocatalyzed atom transfer radical polymerization through a core-first approach. Polym Chem 9:1658–1665

    Article  CAS  PubMed  Google Scholar 

  19. Treat NJ, Sprafke H, Kramer JW, Clark PG, Barton BE, de Alaniz JR, Fors BP, Hawker CJ (2014) Metal-free atom transfer radical polymerization. J Am Chem Soc 136:16096–16101

    Article  CAS  PubMed  Google Scholar 

  20. Ma W, Zhang X, Ma Y, Chen D, Wang L, Zhao C, Yang W (2017) Photoinduced controlled radical polymerization of methacrylates with benzaldehyde derivatives as organic catalysts. Polym Chem 8:3574–3585

    Article  CAS  Google Scholar 

  21. Kutahya C, Aykac FC, Yilmaz G, Yagci Y (2016) LED and visible light-induced metal free ATRP using reducible dyes in the presence of amines. Polym Chem 7:6094–6098

    Article  CAS  Google Scholar 

  22. Jia T, Huang S, Bohra H, Wang M (2019) Examining derivatives of quinacridone, diketopyrrolopyrrole and indigo as the visible-light organic photocatalysts for metal-free atom transfer radical polymerization. Dyes Pigm 165:223–230

    Article  CAS  Google Scholar 

  23. Discekici EH, Anastasaki A, de Alaniz JR, Hawker CJ (2018) Evolution and future directions of metal-free atom transfer radical polymerization. Macromolecules 51:7421–7434

    Article  CAS  Google Scholar 

  24. Das NK, Mandal BM (1982) Methylene blue as a retarder of free-radical polymerization.1. Polymerization of acrylonitrile, methyl-methacrylate and styrene. Polymer 23:1653–1658

    Article  CAS  Google Scholar 

  25. Kim D, Scranton A (2004) The role of diphenyl iodonium salt (DPI) in three-component photoinitiator systems containing methylene blue (MB) and an electron donor. J Polym Sci A Polym Chem 42:5863–5871

    Article  CAS  Google Scholar 

  26. Padon KS, Scranton AB (2000) A mechanistic investigation of a three-component radical photoinitiator system comprising methylene blue, N-methyldiethanolamine, and diphenyliodonium chloride. J Polym Sci A Polym Chem 38:2057–2066

    Article  CAS  Google Scholar 

  27. Pitre SP, McTiernan CD, Scaiano JC (2016) Understanding the kinetics and spectroscopy of photoredox catalysis and transition-metal-free alternatives. Acc Chem Res 49:1320–1330

    Article  CAS  PubMed  Google Scholar 

  28. Pitre SP, McTiernan CD, Scaiano JC (2016) Library of cationic organic dyes for visible-light-driven photoredox transformations. ACS Omega 1:66–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pitre SP, McTiernan CD, Ismaili H, Scaiano JC (2013) Mechanistic insights and kinetic analysis for the oxidative hydroxylation of arylboronic acids by visible light photoredox catalysis: a metal-free alternative. J Am Chem Soc 135:13286–13289

    Article  CAS  PubMed  Google Scholar 

  30. Shimadzu Application News No. A497 (2015) https://www.ssi.shimadzu.com/sites/ssi.shimadzu.com/files/Products/literature/RF/A497.pdf. Accessed 17 Dec 2020

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC (2004) Gaussian 03, Revision E.01. Gaussian, Wallingford

    Google Scholar 

  32. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249

    Article  CAS  Google Scholar 

  33. Shahinyan GA, Amirbekyan AY, Markarian SA (2019) Photophysical properties of methylene blue in water and in aqueous solutions of dimethylsulfoxide. Spectrochim Acta A 217:170–175

    Article  CAS  Google Scholar 

  34. Golz EK, Vander Griend DA (2013) Modeling methylene blue aggregation in acidic solution to the limits of factor analysis. Anal Chem 85:1240–1246

    Article  CAS  PubMed  Google Scholar 

  35. Yang B (2014) Investigation of AGET-ATRP of methyl methacrylate in surface-active ionic liquid microemulsions. Iran Polym J 23:87–92

    Article  CAS  Google Scholar 

  36. Grishin ID, Stakhi SA, Kurochkina DY, Grishin DF (2018) Controlled copolymerization of acrylonitrile with methyl acrylate and dimethyl itaconate via ARGET ATRP mechanism. J Polym Res 25:261

    Article  CAS  Google Scholar 

  37. Krys P, Matyjaszewski K (2017) Kinetics of atom transfer radical polymerization. Eur Polym J 89:482–523

    Article  CAS  Google Scholar 

  38. Fung AKK, Coote ML (2020) A mechanistic perspective on atom transfer radical polymerization. Polym Int. https://doi.org/10.1002/pi.6130

    Article  Google Scholar 

  39. Impert O, Katafias A, Kita P, Mills A, Pietkiewicz-Graczyk A, Wrzeszcz G (2003) Kinetics and mechanism of a fast leuco-Methylene Blue oxidation by copper(II)-halide species in acidic aqueous media. Dalton Trans 2003:348–353

    Article  CAS  Google Scholar 

  40. Heclik K, Duliban J, Debska B, Lubczak J (2019) Analysis of the possibility and conditions of application of methylene blue to determine the activity of radicals in model system with preaccelerated cross-linking of polyester resins. Int J Anal Chem 2019:2879869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Galagan Y, Su WF (2008) Reversible photoreduction of methylene blue in acrylate media containing benzyl dimethyl ketal. J Photochem Photobiol A Chem 195:378–383

    Article  CAS  Google Scholar 

  42. Edeleva MV, Marque S, Bagryanskaya EG (2018) Imidazoline and imidazolidine nitroxides as controlling agents in nitroxide-mediated pseudoliving radical polymerization. Russ Chem Rev 87:328–349

    Article  CAS  Google Scholar 

  43. Kolyakina EV, Grishin ID, Gruzdeva LN, Grishin DF (2018) Polymerization of methyl methacrylate and acrylonitrile in the presence of copper BIAN complex. Iran Polym J 27:599–609

    Article  CAS  Google Scholar 

  44. Dong H, Tang W, Matyjaszewski K (2007) Well defined high molecular weight polyacrylonitrile via activators regenerated by electron transfer ATRP. Macromolecules 40:2974–2977

    Article  CAS  Google Scholar 

  45. Caram JA, Martínez Suárez JF, Gennaro AM, Mirífico MV (2015) Electrochemical behaviour of methylene blue in non-aqueous solvents. Electrochim Acta 164:353–363

    Article  CAS  Google Scholar 

  46. Kayser RH, Young RH (1976) The photoreduction of methylene blue by amines, I: A flash photolysis study of the reaction between triplet methylene blue and amines. Photochem Photobiol 24:395–401

    Article  CAS  Google Scholar 

  47. Kayser RH, Young RH (1976) The photoreduction of methylene blue by amines, II: An investigation of the decay of semireduced methylene blue. Photochem Photobiol 24:403–411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Science and Higher Education of Russian Federation: project 0729-2020-0039 as a basic part of Federal task. The study was carried out on the equipment of the Collective Usage Center “New Materials and Resource-saving Technologies (Lobachevsky State University of Nizhny Novgorod).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan D. Grishin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishin, D.F., Lizyakina, O.S., Vaganova, L.B. et al. Radical polymerization of methyl methacrylate in the presence of methylene blue and organobromides under visible light irradiation. Iran Polym J 30, 1117–1126 (2021). https://doi.org/10.1007/s13726-021-00951-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00951-8

Keywords

Navigation