Skip to main content
Log in

High-strength potato starch/hectorite clay-based nanocomposite film: synthesis and characterization

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

To develop biopolymers for packaging materials, various biopolymers, biosynthetic polymers, chemosynthetic polymers, their blends, and composites have been studying for the last 2 decades. Natural polysaccharides are one of the most available and cheap materials found in nature. Here, a biopolymer film based on a natural polysaccharide, particularly potato starch, is utilized to establish a facile approach to fabricate starch–clay nanocomposite (SC–NC) film, which may potentially be used as an alternative to synthetic plastics. A range of plasticizers and a family of 2:1 phyllosilicates smectic clay, hectorite, are used to prepare the film through a very simple casting method. The clay particles are found to be homogeneously dispersed in SC–NC film at an optimum clay concentration. The mechanical properties of SC–NC film are significantly improved, and the degree of crystallinity is decreased with increasing concentration of clay to indicate the superior biodegradability of the films. The SC–NC film exhibits better thermal features compared with an ordinary starch film. The swelling percentage of SC–NC film is also greatly decreased to be used as a packaging film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sudesh K, Iwata T (2008) Sustainability of biobased and biodegradable plastics. Clean: Soil, Air, Water 36:433–442

    CAS  Google Scholar 

  2. Vert M, Santos ID, Ponsart S, Alauzet N, Morgat JL, Coudane J, Garreau H (2002) Degradable polymers in a living environment: where do you end up? Polym Int 51:840–844

    Article  CAS  Google Scholar 

  3. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  4. Coleri Cihan A, Karaca B, Ozel BP, Kilic T (2017) Determination of the biofilm production capacities and characteristics of members belonging to Bacillaceae family. World J Microbiol Biotech 33:118

    Article  Google Scholar 

  5. Dai L, Zhang J, Cheng F (2019) Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. Int J Biol Macromol 132:897–905

    Article  CAS  Google Scholar 

  6. Van Soest JJG, Essers P (1997) Influence of amylose-amylopectin ratio on properties of extruded starch plastic sheets. J Macromol Sci Pure Appl Chem 34:1665–1689

    Article  Google Scholar 

  7. Fabunmi OO, Tabil LG, Chang PR, Panigrahi S (2013) Developing biodegradable plastics from starch. ASABE/CSBE North Central Intersectional Meeting 0300:1–12

    Google Scholar 

  8. Wang XL, Yang KK, Wang YZ (2003) Properties of starch blends with biodegradable polymers. J Macromol Sci Polym Rev 43:385–409

    Article  CAS  Google Scholar 

  9. Kawasumi M (2004) The discovery of polymer-clay hybrids. J Polym Sci Part A Polym Chem 42:819–824

    Article  CAS  Google Scholar 

  10. Wang N, Yu J, Chang PR, Ma X (2008) Influence of formamide and water on the properties of thermoplastic starch/poly(lactic acid) blends. Carbohydr Polym 71:109–118

    Article  CAS  Google Scholar 

  11. Van Soest JJG, Bezemer RC, De Wit D, Vliegenthart JFG (1996) Influence of glycerol on the melting of potato starch. Ind Crops Prod 5:1–9

    Article  Google Scholar 

  12. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35

    Article  CAS  Google Scholar 

  13. Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18:689–706

    Article  CAS  Google Scholar 

  14. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575

    Article  CAS  Google Scholar 

  15. Sevostianov I, Kachanov M (2007) Effect of interphase layers on the overall elastic and conductive properties of matrix composites:applications to nanosize inclusion. Int J Solids Struct 44:1304–1315

    Article  CAS  Google Scholar 

  16. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ϵ-caprolactam. J Polym Sci Part A Polym Chem 31:983–986

    Article  CAS  Google Scholar 

  17. Okada A, Usuki A (1995) The chemistry of polymer-clay hybrids. Mater Sci Eng C 3:109–115

    Article  Google Scholar 

  18. Nanda T, Singh K, Shelly D, Mehta R (2020) Advancements in multi-scale filler reinforced epoxy nanocomposites for improved impact strength: a review. Crit Rev Solid State Mater Sci 15:1–49

    Article  Google Scholar 

  19. Lan T, Pinnavaia TJ (1994) Clay-reinforced epoxy nanocomposites. Chem Mater 6:2216–2219

    Article  CAS  Google Scholar 

  20. Yano K, Usuki A, Okada A (1997) Synthesis and properties of polyimide-clay hybrid films. J Polym Sci Part A Polym Chem 35:2289–2294

    Article  CAS  Google Scholar 

  21. Fukushima Y, Inagaki S (1987) Synthesis of an intercalated compound of montmorillonite and 6-polyamide. J Incl Phenom 5:473–482

    Article  CAS  Google Scholar 

  22. Giannelis EP, Chen H, Demeter J, Manias E, Hadjichristidis N, Karim A (1999) Mobility of polymers in nanometer slits: kinetics of polymer melt intercalation in layered silicates. Am Chem Soc Polym Prepr Div Polym Chem 40:91–92

    CAS  Google Scholar 

  23. Chen TK, Tien YI, Wei KH (2000) Synthesis and characterization of novel segmented polyurethane/clay nanocomposites. Polymer 41:1345–1353

    Article  CAS  Google Scholar 

  24. Reichert P, Hoffmann B, Bock T, Thomann R, Mülhaupt R, Friedrich C (2001) Morphological stability of poly (propylene) nanocomposites. Macromol Rapid Commun 22:519–523

    Article  CAS  Google Scholar 

  25. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  26. Islam HBMZ, Susan MABH, Bin IA (2020) Effects of plasticizers and clays on the physical, chemical, mechanical, thermal, and morphological properties of potato starch-based nanocomposite films. ACS Omega 5:17543–17552

    Article  CAS  Google Scholar 

  27. Siemann U (2005) Solvent cast technology—a versatile tool for thin film production. Prog Colloid Polym Sci 130:1–14

    CAS  Google Scholar 

  28. Park HM, Li X, Jin CZ, Park CY, Cho WJ, Ha CS (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mater Eng 287:553–558

    Article  CAS  Google Scholar 

  29. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  CAS  Google Scholar 

  30. Thuwall M, Boldizar A, Rigdahl M (2006) Extrusion processing of high amylose potato starch materials. Carbohydr Polym 65:441–446

    Article  CAS  Google Scholar 

  31. Tang X, Alavi S, Herald TJ (2008) Barrier and mechanical properties of starch–clay nanocomposite films. Cereal Chem 85:433–439

    Article  CAS  Google Scholar 

  32. Venien A, Levieux D (2005) Differentiation of bovine from porcine gelatines using polyclonal anti-peptide antibodies in indirect and competitive indirect ELISA. J Pharm Biomed Anal 39:418–424

    Article  CAS  Google Scholar 

  33. Pantani R, Sorrentino A (2013) Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym Degrad Stab 98:1089–1096

    Article  CAS  Google Scholar 

  34. El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym Test 21:665–674

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.B. Imran gratefully acknowledges the support from the Ministry of Education, People’s Republic of Bangladesh. The author is also thankful to the Committee for Advanced Studies and Research (CASR) in BUET and The World Academy of Sciences (TWAS), Italy a program of UNESCO, for the funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abu Bin Imran.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1054 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, H.B.M.Z., Susan, M.A.B.H. & Imran, A.B. High-strength potato starch/hectorite clay-based nanocomposite film: synthesis and characterization. Iran Polym J 30, 513–521 (2021). https://doi.org/10.1007/s13726-021-00907-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00907-y

Keywords

Navigation