Skip to main content
Log in

Antibacterial and Structural Properties and Printability of Starch/Clay/Polyethylene Composite Films

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

A composite of thermoplastic starch (TPS), low-density polyethylene (LDPE) and citric acid-modified montmorillonite (CMMT) was prepared in a twin screw extruder for packaging film application. Starch was first converted to the thermoplastic state by using sorbitol and water. Composite films were produced on a chill roll system and then were modified for printability by grafting of acrylonitrile onto the starch backbone. Antimicrobial property and printability of the films were studied from which the sample with the highest antimicrobial property and the best printability was selected. This optimal sample was then characterized by Fourier transform infrared, thermal gravimetric analysis, differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy. The composite film showed a matrix/dispersed morphology in which LDPE formed a continuous phase and TPS/CMMT nanocomposite particles appeared as dispersed phase. Biodegradability, water absorption, oxygen permeability, tensile strength and transparency of optimal film were also studied. The results indicated very good properties of the produced composite film for packaging application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Navarchian AH, Sharafi A, Kermanshahi RK (2013) Biodegradation study of starch-GRAFT-acrylonitrile copolymer. J Polym Environ 21(1):233–244

    Article  CAS  Google Scholar 

  2. Acosta S, Jiménez A, Cháfer M, González-Martínez C, Chiralt A (2015) Physical properties and stability of starch-gelatin based films as affected by the addition of esters of fatty acids. Food Hydrocoll 49:135–143

    Article  CAS  Google Scholar 

  3. Xie F, Pollet E, Halley PJ, Averous L (2013) Starch-based nano-biocomposites. Prog Polym Sci 38(10):1590–1628

    Article  CAS  Google Scholar 

  4. Teodoro AP, Mali S, Romero N, de Carvalho GM (2015) Cassava starch films containing acetylated starch nanoparticles as reinforcement: physical and mechanical characterization. Carbohydr Polym 126:9–16

    Article  CAS  Google Scholar 

  5. Oleyaei SA, Zahedi Y, Ghanbarzadeh B, Moayedi AA (2016) Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int J Biol Macromol 31(89):256–264

    Article  Google Scholar 

  6. El-Hamshary H, Fouda MM, Moydeen M, El-Newehy MH, Al-Deyab SS, Abdel-Megeed A (2015) Synthesis and antibacterial of carboxymethyl starch-grafted poly (vinyl imidazole) against some plant pathogens. Int J Biol Macromol 31(72):1466–1472

    Article  Google Scholar 

  7. Lai SM, Sun WW, Don TM (2015) Preparation and characterization of biodegradable polymer blends from poly (3-hydroxybutyrate)/poly (vinyl acetate)-modified corn starch. Polym Eng Sci 55(6) 1321–1329

    Article  CAS  Google Scholar 

  8. Sabetzadeh M, Bagheri R, Masoomi M (2015) Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films. Carbohydr Polym 119:126–133

    Article  CAS  Google Scholar 

  9. Nguyen DM, Do TV, Grillet AC, Thuc HH, Thuc CN (2016) Biodegradability of polymer film based on low density polyethylene and cassava starch. Int Biodeterior Biodegrad 115:257–265

    Article  CAS  Google Scholar 

  10. Thipmanee R, Lukubira S, Ogale AA, Sane A (2016) Enhancing distributive mixing of immiscible polyethylene/thermoplastic starch blend through zeolite ZSM-5 compounding sequence. Carbohydr polym 136:812–819

    Article  CAS  Google Scholar 

  11. Majdzadeh-Ardakani K, Navarchian AH, Sadeghi F (2010) Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr Polym 79:547–554

    Article  CAS  Google Scholar 

  12. Navarchian AH, Jalalian M, Pirooz M (2015) Characterization of starch/poly (vinyl alcohol)/clay nanocomposite films prepared in twin-screw extruder for food packaging application. J Plastic Film Sheeting 31(3):309–336

    Article  CAS  Google Scholar 

  13. Sabetzadeh M, Bagheri R, Masoomi M (2016) Effect of nanoclay on the properties of low density polyethylene/linear low density polyethylene/thermoplastic starch blend films. Carbohydr Polym 141:75–81

    Article  CAS  Google Scholar 

  14. Ramos M, Beltran A, Valdes A, Peltzer MA, Jimenez A (2013) Carvacrol and thymol for fresh food packaging. J Bioequivalence Bioavail 5:154–160

    Article  CAS  Google Scholar 

  15. Bof MJ, Jiménez A, Locaso DE, García MA, Chiralt A (2016) Grapefruit seed extract and lemon essential oil as active agents in corn starch–chitosan blend films. Food Bioprocess Technol 9(12):2033–2045

    Article  CAS  Google Scholar 

  16. Guz L, Famá L, Candal R, Goyanes S (2016) Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites. Carbohydr Polym 157:1611–1699

    Article  Google Scholar 

  17. Kuorwel KK, Cran MJ, Sonneveld K, Miltz J, Bigger SW (2011) Antimicrobial activity of natural agents against Saccharomyces cerevisiae. Packag Technol Sci 24(5):299–307

    Article  CAS  Google Scholar 

  18. Bhatia S, Bharti A (2015) Evaluating the antimicrobial activity of Nisin, Lysozyme and Ethylenediaminetetraacetate incorporated in starch based active food packaging film. J Food Sci Technol 52(6):3504–3512

    CAS  Google Scholar 

  19. Haraguchi H, Ohmi I, Fukuda A, Tamura Y, Mizutani K, Tanaka O, Chou WH (1997) Inhibition of aldose reductase and sorbitol accumulation by astilbin and taxifolin dihydroflavonols in Engelhardtia chrysolepis. Biosci Biotechnol Biochem 61(4):651–654

    Article  CAS  Google Scholar 

  20. Barr M, Tice LF (1957) A study of the inhibitory concentrations of glycerin-sorbitol and propylene glycol-sorbitol combinations on the growth of microorganisms. J Am Pharm Assoc 46(4):217–218

    Article  CAS  Google Scholar 

  21. Ghosh RN, Jana T, Ray BC, Adhikari B (2004) Grafting of vinyl acetate onto low density polyethylene-starch biodegradable films for printing and packaging applications. Polym Int 53(3):339–343

    Article  CAS  Google Scholar 

  22. Jana T, Roy BC, Ghosh R, Maiti S (2001) Biodegradable film. IV. Printability study on biodegradable film. J Appl Polym Sci 79(7):1273–1277

    Article  CAS  Google Scholar 

  23. Bonev B, Hooper J, Parisot J (2008) Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J Antimicrob Chemother 61(6):1295–1301

    Article  CAS  Google Scholar 

  24. Baltch AL, Smith RP (1994) Pseudomonas aeruginosa: infections and treatment. Infect Dis Ther Ser 12

  25. Becker K, Friedrich AW, Lubritz G, Weilert M, Peters G, Von Eiff C (2003) Prevalence of genes encoding pyrogenic toxin superantigens and exfoliative toxins among strains of Staphylococcus aureus isolated from blood and nasal specimens. J Clin Microbiol 41(4):1434–1439

    Article  CAS  Google Scholar 

  26. Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, Lina G (2001) Egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol 166(1):669–677

    Article  CAS  Google Scholar 

  27. Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP, Fridkin SK (2003) Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 348(14):1342–1347

    Article  Google Scholar 

  28. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426(6964):306–310

    Article  CAS  Google Scholar 

  29. Waters AE, Contente-Cuomo T, Buchhagen J, Liu CM, Watson L, Pearce K, Price LB (2011) Multidrug-resistant Staphylococcus aureus in US meat and poultry. Clin Infect Dis 52, 1227–1230

    Article  Google Scholar 

  30. Wright A, Hawkins CH, Änggård EE, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34(4):349–357

    Article  CAS  Google Scholar 

  31. Macknight ADC (1988) Principles of cell volume regulation. Kidney Blood Press Res 11(3–5):114–141

    Article  CAS  Google Scholar 

  32. Koch AL (1984) Shrinkage of growing Escherichia coli cells by osmotic challenge. J Bacteriol 159(3):919–924

    CAS  Google Scholar 

  33. Mager J, Kuczynski M, Schatzberg G, Avi-Dor Y (1956) Turbidity changes in bacterial suspensions in relation to osmotic pressure. Microbiology 14(1):69–75

    CAS  Google Scholar 

  34. Mugnier J, Jung G (1985) Survival of bacteria and fungi in relation to water activity and the solvent properties of water in biopolymer gels. Appl Environ Microbiol 50(1):108–114

    CAS  Google Scholar 

  35. Mille Y, Beney L, Gervais P (2005) Compared tolerance to osmotic stress in various microorganisms: towards a survival prediction test. Biotechnol Bioeng 92(4):479–484

    Article  CAS  Google Scholar 

  36. Heidari-Sureshjani M, Tabatabaei-Yazdi F, Alizadeh-Behbahani B, Mortazavi A (2015) Antimicrobial effect of aqueous, ethanol, methanol and glycerin extracts of Satureja bachtiarica on Streptococcus pyogenes, Pseudomonas aeruginosa and Staphylococcus epidermidis. Zahedan J Res Med Sci 17(7):11–15

    Google Scholar 

  37. Singh BR (2014) Antibacterial activity of glycerol, lactose, maltose, mannitol, raffinose and xylose. Noto-are Med 17223318

  38. Saegeman VS, Ectors NL, Lismont D, Verduyckt B, Verhaegen J (2008) Short-and long-term bacterial inhibiting effect of high concentrations of glycerol used in the preservation of skin allografts. Burns 34(2):205–211

    Article  Google Scholar 

  39. Ross A, Kearney JN (2004) The measurement of water activity in allogeneic skin grafts preserved using high concentration glycerol or propylene glycol. Cell Tissue Banking 5(1):37–44

    Article  CAS  Google Scholar 

  40. Poirier I, Maréchal PA, Gervais P (1997) Effects of the kinetics of water potential variation on bacteria viability. J Appl Microbiol 82(1):101–106

    Article  CAS  Google Scholar 

  41. Bikiaris D, Prinos J, Koutsopoulos K, Vouroutzis N, Pavlidou E, Frangis N, Panayiotou C (1998) LDPE/plasticized starch blends containing PE-g-MA copolymer as compatibilizer. Polym Degrad Stab 59(1):287–291

    Article  CAS  Google Scholar 

  42. Kaviya S, Santhanalakshmi J, Viswanathan B (2011) Green synthesis of silver nanoparticles using Polyalthia longifolia leaf extract along with D-sorbitol: study of antibacterial activity. J Nanotechnol

  43. Pushpadass HA, Bhandari P, Hanna MA (2010) Effects of LDPE and glycerol contents and compounding on the microstructure and properties of starch composite films. Carbohydr Polym 82(4):1082–1089

    Article  CAS  Google Scholar 

  44. Joshi MS, Silverman J, Singer K (1976) Gel formation observed following the radiation grafting of acrylonitrile to polyethylene. J Polym Sci 14(12):723–728

    CAS  Google Scholar 

  45. Pansare GR, Nagesh N, Bhoraskar VM (1994) A study on grafting of acrylonitrile onto high-density polyethylene by the neutron activation analysis technique. J Phys D 27(4):871

    Article  CAS  Google Scholar 

  46. Marans NS (1967) U.S. Patent No. 3,342,900. U.S. Patent and Trademark Office, Washington, DC

  47. Hebeish A, Abd El-Thalouth I, El-Kashouti MA, Abdel-Fattah SH (1979) Graft copolymerization of acrylonitrile onto starch using potassium permanganate as initiator. Die Angew Makromol Chem 78(1):101–108

    Article  CAS  Google Scholar 

  48. Ma X, Yu J, Wang N (2007) Production of thermoplastic starch/mmt-sorbitol nanocomposites by dual-melt extrusion processing. Macromol Mater Eng 292(6):723–728

    Article  CAS  Google Scholar 

  49. Masclaux C, Gouanvé F, Espuche E (2010) Experimental and modelling studies of transport in starch nanocomposite films as affected by relative humidity. J Membr Sci 363:221–231

    Article  CAS  Google Scholar 

  50. Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2003) High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene. Polymer 44(5):1517–1526

    Article  CAS  Google Scholar 

  51. Beg MDH, Kormin S, Bijarimi M, Zaman HU (2016) Preparation and characterization of low-density polyethylene/thermoplastic starch composites. Adv Polym Technol 35(1):1–9

    Article  Google Scholar 

  52. Peacock A (2000) Handbook of polyethylene: structures: properties, and applications. CRC Press, Boca Raton

    Google Scholar 

  53. Prasad A, Mowery D (1997) A quantitative analysis of LDPE/LLDPE blend using DSC and FTIR methods. In technical papers of the annual technical conference-society of plastics engineers incorporated. Soc Plast Eng INC 1997(2):2310–2314

    Google Scholar 

  54. Liu X, Wang Y, Yu L, Tong Z, Chen L, Liu H, Li X (2013) Thermal degradation and stability of starch under different processing conditions. Starch-Stärke 65(1–2):48–60

    Article  CAS  Google Scholar 

  55. Hussein AS, Nadum AA, Faise JM (2011) Thermal properties of low density polyethylene with oyster shell composite: DSC Study. World Appl Sci J 14(11):1730–1733

    Google Scholar 

  56. Deng C, Zhao J, Deng CL, Lv Q, Chen L, Wang YZ (2014) Effect of two types of iron MMTs on the flame retardation of LDPE composite. Polym Degrad Stab 103:1–10

    Article  CAS  Google Scholar 

  57. Chuayjuljit S, Hosililak S, Athisart A (2009) Thermoplastic cassava starch/sorbitol-modified montmorillonite nanocomposites blended with low density polyethylene: properties and biodegradability study. J Metals Mater Minerals 19(1):59–65

    CAS  Google Scholar 

  58. Kumar P, Sandeep K, Alavi S, Truong V, Gorga R (2010) Preparation and characterization of bio-nanocomposite films based on soy protein isolate and montmorillonite using melt extrusion. J Food Eng 100:480–489

    Article  CAS  Google Scholar 

  59. Lertwimolnun W, Vergnes B (2007) Influence of screw profile and extrusion conditions on the microstructure of polypropylene/organoclay nanocomposites. Polym Eng Sci 47(12):2100–2109

  60. Di Y, Iannace S, Maio ED, Nicolais L (2003) Nanocomposites by melt intercalation based on polycaprolactone and organoclay. J Polym Sci Part B 41:670–678

  61. Ning W, Jiugao Y, Xiaofei M, Ying W (2007) The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohydr Polym 67(3):446–453

  62. Folkes MJ, Hope PS (1993) Polymer blends and alloys. Blackie Academic & Professional, London

    Book  Google Scholar 

  63. Lee J, Han C (1999) Evolution of a dispersed morphology from a co-continuous morphology in immiscible polymer blends. Polymer 40(10):2521–2536

    Article  CAS  Google Scholar 

  64. Wang S, Yu J, Yu J (2005) Compatible thermoplastic starch/polyethylene blends by one-step reactive extrusion. Polym Int 54(2):279–285

    Article  CAS  Google Scholar 

  65. Chen B, Evans J (2005) Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydr Polym 61:455–463

    Article  CAS  Google Scholar 

  66. Huang M, Yu J, Ma X (2004) Studies on the properties of montmorillonite-reinforced thermoplastic starch composites. Polymer 45(20):7017–7023

  67. Sahari J, Sapuan SM, Zainudin ES, Maleque MA (2012) A new approach to use Arenga pinnata as sustainable biopolymer: effects of plasticizers on physical properties. Procedia Chem 4:254–259

    Article  CAS  Google Scholar 

  68. Olsson E, Hedenqvist MS, Johansson C, Järnström L (2013) Influence of citric acid and curing on moisture sorption, diffusion and permeability of starch films. Carbohydr Polym 94(2):765–772

    Article  CAS  Google Scholar 

  69. Cheviron P, Gouanvé F, Espuche E (2015) Starch/silver nanocomposite: effect of thermal treatment temperature on the morphology, oxygen and water transport properties. Carbohydr Polym 134:635–645

    Article  CAS  Google Scholar 

  70. Sothornvit R, Pitak N (2007) Oxygen permeability and mechanical properties of banana films. Food Res Int 40(3):365–370

    Article  CAS  Google Scholar 

  71. Chiellini E, Corti A, D’Antone S, Billingham NC (2007) Microbial biomass yield and turnover in soil biodegradation tests: carbon substrate effects. J Polym Environ 15(3):169–178

    Article  CAS  Google Scholar 

  72. Magalhães N, Andrade C (2009) Thermoplastic corn starch/clay hybrids: effect of clay type and content on physical properties. Carbohydr Polym 75:712–718

    Article  Google Scholar 

  73. Arvanitoyannis I, Biliaderis CG, Ogawa H, Kawasaki N (1988) Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: Part 1. Carbohydr Polym 36(2):89–104

    Google Scholar 

  74. Kampeerapappun P, Aht-ong D, Pentrakoon D, Srikulkit K (2007) Preparation of cassava starch/montmorillonite composite film. Carbohydr Polym 67(2):155–163

    Article  CAS  Google Scholar 

  75. Garg S, Jana AK (2007) Studies on the properties and characteristics of starch–LDPE blend films using cross-linked, glycerol modified, cross-linked and glycerol modified starch. Eur Polym J 43(9):3976–3987

    Article  CAS  Google Scholar 

  76. Raj B, Sankar KU, Ramaiah S (2004) Low density polyethylene/starch blend films for food packaging applications. Adv Polym Tech 23(1):32–45

    Article  CAS  Google Scholar 

  77. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir H. Navarchian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirooz, M., Navarchian, A.H. & Emtiazi, G. Antibacterial and Structural Properties and Printability of Starch/Clay/Polyethylene Composite Films. J Polym Environ 26, 1702–1714 (2018). https://doi.org/10.1007/s10924-017-1056-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-017-1056-8

Keywords

Navigation