Skip to main content
Log in

Eco-friendly polyelectrolyte nanocomposite membranes based on chitosan and sulfonated chitin nanowhiskers for fuel cell applications

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

Novel sulfonic acid-functionalized chitin nanowhiskers (sChW) with enhanced proton conductivity were prepared for fabricating green and environmentally friendly chitosan (CS)-based nanocomposite polymer electrolyte membranes (PEMs). The performance of sChW in the development of direct methanol fuel cell (DMFC) nanocomposite membranes was also assessed. The manufactured nanocomposite membranes were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), CHNS elemental analysis, X-ray diffractometry (XRD), ion-exchange capacity (IEC), water uptake, as well as proton conductivity and methanol permeability. The results showed that modification of chitin nanowhiskers (ChW) with sulfonic acid groups, as the proton-conducting sites, could enhance proton conductivity of the manufactured membranes, leading to a fall in methanol permeability, as a result of attractive interactions between the negatively charged sulfonic acid groups on the surface of sChW and the positively charged amine groups in the chitosan chains. Thus, the selectivity parameter (the ratio of the proton conductivity to methanol permeability) of the chitosan-based nanocomposite membranes significantly increased from 3900 for pristine chitosan PEM to 26,888 S.s.cm−3 (ca. 6.8 times) for a membrane with 5% (wt) sChW. The functionalization strategy used herein can pave the way for the development of efficient polyelectrolyte membranes for applications in direct methanol fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bashir S, Liu JL (2015) Advanced nanomaterials and their applications in renewable energy. Elsiver, Amsterdam

    Google Scholar 

  2. Shirdast A, Sharif A, Abdollahi M (2016) Effect of the incorporation of sulfonated chitosan/sulfonated graphene oxide on the proton conductivity of chitosan membranes. J Power Sources 306:541–551

    Article  CAS  Google Scholar 

  3. Tohidian M, Ghaffarian SR, Shakeri SE, Bahlakeh G (2013) Sulfonated aromatic polymers and organically modified montmorillonite nanocomposite membranes for fuel cells applications. J Macromol Sci B 52:1578–1590

    Article  Google Scholar 

  4. Mukoma P, Jooste B, Vosloo H (2004) A comparison of methanol permeability in Chitosan and Nafion 117 membranes at high to medium methanol concentrations. J Membr Sci 243:293–299

    Article  CAS  Google Scholar 

  5. Tenson TJ, Baby R (2017) Recent advances in proton exchange membrane fuel cells: a view. Int Adv Res J Sci Eng Tech 4(6):34–40

  6. Singh D, Lu D, Djilali N (1999) A two-dimensional analysis of mass transport in proton exchange membrane fuel cells. Int J Eng Sci 37:431–452

    Article  CAS  Google Scholar 

  7. Zakaria Z, Kamarudin SK, Timmiati S (2016) Membranes for direct ethanol fuel cells: an overview. Appl Energy 163:334–342

    Article  CAS  Google Scholar 

  8. Shakeri SE, Ghaffarian SR, Tohidian M, Bahlakeh G, Taranejoo S (2013) Polyelectrolyte nanocomposite membranes, based on chitosan-phosphotungstic acid complex and montmorillonite for fuel cells applications. J Macromol Sci B 52:1226–1241

    Article  CAS  Google Scholar 

  9. Osifo PO, Masala A (2012) The influence of chitosan membrane properties for direct methanol fuel cell applications. J Fuel Cell Sci Technol 9:011003–011012

    Article  Google Scholar 

  10. Ramadhan L, Radiman C, Suendo V, Wahyuningrum D, Valiyaveettil S (2012) Synthesis and characterization of polyelectrolyte complex N-succinylchitosan-chitosan for proton exchange membranes. Procedia Chem 4:114–122

    Article  CAS  Google Scholar 

  11. Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4:3308–3318

    Article  CAS  PubMed  Google Scholar 

  12. Vaghari H, Jafarizadeh-Malmiri H, Berenjian A, Anarjan N (2013) Recent advances in application of chitosan in fuel cells. Sustain Chem Process 1:16

    Article  Google Scholar 

  13. Rosli NAH, Loh KS, Wong WY, Yunus RM, Lee TK, Ahmad A, Chong ST (2020) Review of chitosan-based polymers as proton exchange membranes and roles of chitosan-supported ionic liquids. Int J MolSci 21:632

    CAS  Google Scholar 

  14. Soontarapa K, Intra U (2006) Chitosan-based fuel cell membranes. Chem Eng Commun 193:855–868

    Article  CAS  Google Scholar 

  15. Xiang Y, Yang M, Guo Z, Cui Z (2009) Alternatively chitosan sulfate blending membrane as methanol-blocking polymer electrolyte membrane for direct methanol fuel cell. J Membr Sci 337:318–323

    Article  CAS  Google Scholar 

  16. Tohidian M, Ghaffarian SR, Shakeri SE, Dashtimoghadam E, Hasani-Sadrabadi MM (2013) Organically modified montmorillonite and chitosan–phosphotungstic acid complex nanocomposites as high performance membranes for fuel cell applications. J Solid State Electrochem 17:2123–2137

    Article  CAS  Google Scholar 

  17. Shaari N, Kamarudin S (2015) Chitosan and alginate types of bio-membrane in fuel cell application: an overview. J Power Sources 289:71–80

    Article  CAS  Google Scholar 

  18. Smitha B, Sridhar S, Khan A (2004) Polyelectrolyte complexes of chitosan and poly (acrylic acid) as proton exchange membranes for fuel cells. Macromolecules 37:2233–2239

    Article  CAS  Google Scholar 

  19. Smitha B, Sridhar S, Khan A (2006) Chitosan–poly (vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications. J Power Sources 159:846–854

    Article  CAS  Google Scholar 

  20. Tripathi BP, Shahi VK (2011) Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog Polym Sci 36:945–979

    Article  CAS  Google Scholar 

  21. Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohydr Polym 92:955–975

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Zhang H, Jiang Z, Yang X, Xiao L (2009) Tuning the performance of direct methanol fuel cell membranes by embedding multifunctional inorganic submicrospheres into polymer matrix. J Power Sources 188:64–74

    Article  CAS  Google Scholar 

  23. Wang J, Zhao Y, Hou W, Geng J, Xiao L, Wu H, Jiang Z (2010) Simultaneously enhanced methanol barrier and proton conductive properties of phosphorylated titanate nanotubes embedded nanocomposite membranes. J Power Sources 195:1015–1023

    Article  CAS  Google Scholar 

  24. Mohebbi S, Nezhad MN, Zarrintaj P, Jafari SH, Gholizadeh SS, Saeb MR, Mozafari M (2019) Chitosan in biomedical engineering: a critical review. Curr Stem Cell Res Ther 14:93–116

    Article  CAS  PubMed  Google Scholar 

  25. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  26. Prashanth KH, Tharanathan R (2007) Chitin/chitosan: modifications and their unlimited application potential: an overview. Trends Food Sci Technol 18:117–131

    Article  CAS  Google Scholar 

  27. Jimtaisong A, Saewan N (2014) Utilization of carboxymethyl chitosan in cosmetics. Int JCosmet Sci 36:12–21

    Article  CAS  Google Scholar 

  28. Li M-C, Wu Q, Song K, Cheng H, Suzuki S, Lei T (2016) Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustain Chem Eng 4:4385–4395

    Article  CAS  Google Scholar 

  29. Raabe D, Al-Sawalmih A, Yi S, Fabritius H (2007) Preferred crystallographic texture of α-chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. Acta Biomater 3:882–895

    Article  CAS  PubMed  Google Scholar 

  30. Salaberria AM, Labidi J, Fernandes SC (2015) Different routes to turn chitin into stunning nano-objects. Eur Polym J 68:503–515

    Article  CAS  Google Scholar 

  31. Ofem MI (2017) Characterisation of alpha-chitin/poly (acrylic acid) blend films. Mater Discovery 9:1–10

    Article  Google Scholar 

  32. Huang Y, Yao M, Zheng X, Liang X, Su X, Zhang Y, Lu A, Zhang L (2015) Effects of chitin whiskers on physical properties and osteoblast culture of alginate based nanocomposite hydrogels. Biomacromol 16:3499–3507

    Article  CAS  Google Scholar 

  33. Meshkat SS, Nezhad MN, Bazmi MR (2019) Investigation of Carmine dye removal by green chitin nanowhiskers adsorbent. Emerg Sci J 3:187–194

    Article  Google Scholar 

  34. Zhang C, Zhuang X, Li X, Wang W, Cheng B, Kang W, Cai Z, Li M (2016) Chitin nanowhisker-supported sulfonated poly (ether sulfone) proton exchange for fuel cell applications. Carbohydr Polym 140:195–201

    Article  CAS  PubMed  Google Scholar 

  35. Pighinelli L, Broquá J, Zanin B, Zanin B, Flach A, Mallmann C, Taborda F, Machado L, Alves S, Silva M (2019) Methods of chitin production a short review. Am J Biomed Sci Res 3:307–314

    Article  Google Scholar 

  36. Pereira AG, Muniz EC, Hsieh YL (2014) Chitosan-sheath and chitin-core nanowhiskers. Carbohydr Polym 107:158–166

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Y, Xue C, Xue Y, Gao R, Zhang X (2005) Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr Res 340:1914–1917

    Article  CAS  PubMed  Google Scholar 

  38. Bragg WH, Bragg WL (1913) The reflection of X-rays by crystals. Proc R Soc Lond Ser A 88:428–438

    Article  CAS  Google Scholar 

  39. Azimi M, Peighambardoust SJ (2017) Methanol crossover and selectivity of nafion/hetero-polyacid/montmorillonite nanocomposite proton exchange membranes for DMFC Applications. Iran J Chem Eng (IJChE) 14:65–81

    Google Scholar 

  40. Kim D, Scibioh MA, Kwak S, Oh IH, Ha HY (2004) Nano-silica layered composite membranes prepared by PECVD for direct methanol fuel cells. Electrochem Commun 6:1069–1074

    Article  CAS  Google Scholar 

  41. Hasanabadi N, Ghaffarian SR, Hasani-Sadrabadi MM (2011) Magnetic field aligned nanocomposite proton exchange membranes based on sulfonated poly (ether sulfone) and Fe2O3 nanoparticles for direct methanol fuel cell application. Int J Hydrog Energy 36:15323–15332

    Article  CAS  Google Scholar 

  42. Zvezdova D (2010) Synthesis and characterization of chitosan from marine sources in Black Sea. Ann Proc 49:65–69 (“Angel Kanchev” University of Ruse)

    Google Scholar 

  43. Hai TAP, Sugimoto R (2018) Surface modification of chitin and chitosan with poly (3-hexylthiophene) via oxidative polymerization. Appl Surf Sci 434:188–197

    Article  CAS  Google Scholar 

  44. Li C, Liu H, Luo B, Wen W, He L, Liu M, Zhou C (2016) Nanocomposites of poly (l-lactide) and surface-modified chitin whiskers with improved mechanical properties and cytocompatibility. Eur Polym J 81:266–283

    Article  CAS  Google Scholar 

  45. Li J, Revol JF, Marchessault R (1997) Effect of degree of deacetylation of chitin on the properties of chitin crystallites. J Appl Polym Sci 65:373–380

    Article  CAS  Google Scholar 

  46. Tsai HS, Wang YZ, Lin JJ, Lien WF (2010) Preparation and properties of sulfopropyl chitosan derivatives with various sulfonation degree. J Appl Polym Sci 116:1686–1693

    CAS  Google Scholar 

  47. Jayakumar R, Nwe N, Nagagama H, Furuike T, Tamura H (2008) Synthesis, characterization and biospecific degradation behavior of sulfated chitin. Macromol Symp 1:163–167

    Article  Google Scholar 

  48. Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493

    Article  CAS  Google Scholar 

  49. Kim D-Y, Nishiyama Y, Wada M, Kuga S (2001) High-yield carbonization of cellulose by sulfuric acid impregnation. Cellulose 8:29–33

    Article  CAS  Google Scholar 

  50. Casadidio C, Peregrina DV, Gigliobianco MR, Deng S, Censi R, Di Martino P (2019) Chitin and chitosans: characteristics, eco-friendly processes, and applications in cosmetic science. Mar Drugs 17:369

    Article  CAS  PubMed Central  Google Scholar 

  51. Ioelovich M (2014) Crystallinity and hydrophility of chitin and chitosan. J Chem 3:7–14

    Google Scholar 

  52. Li Q, Zhou J, Zhang L (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci B 47:1069–1077

    Article  CAS  Google Scholar 

  53. Tohidian M, Ghaffarian SR, Nouri M, Jaafarnia E, Haghighi AH (2015) Polyelectrolyte nanocomposite membranes using imidazole-functionalized nanosilica for fuel cell applications. J Macromol Sci B 54:17–31

    Article  CAS  Google Scholar 

  54. Tohidian M, Ghaffarian SR (2018) Surface modified multi-walled carbon nanotubes and Nafion nanocomposite membranes for use in fuel cell applications. Polym Adv Technol 29:1219–1226

    Article  CAS  Google Scholar 

  55. Marschall R, Sharifi M, Wark M (2009) Proton conductivity of imidazole functionalized ordered mesoporous silica: influence of type of anchorage, chain length and humidity. Microporous Mesoporous Mater 123:21–29

    Article  CAS  Google Scholar 

  56. Haghighi AH, Tohidian M, Ghaderian A, Shakeri SE (2017) Polyelectrolyte nanocomposite membranes using surface modified nanosilica for fuel cell applications. J Macromol Sci B 56:383–394

    Article  CAS  Google Scholar 

  57. Jiang Z, Zheng X, Wu H, Wang J, Wang Y (2008) Proton conducting CS/P (AA-AMPS) membrane with reduced methanol permeability for DMFCs. J Power Sources 180:143–153

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. J. Jafari from Sahand University of Technology for helpful fundamental discussions. This research was supported by Amirkabir University of Technology, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Reza Ghaffarian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasirinezhad, M., Ghaffarian, S.R. & Tohidian, M. Eco-friendly polyelectrolyte nanocomposite membranes based on chitosan and sulfonated chitin nanowhiskers for fuel cell applications. Iran Polym J 30, 355–367 (2021). https://doi.org/10.1007/s13726-020-00895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00895-5

Keywords

Navigation