Skip to main content
Log in

Organically modified montmorillonite and chitosan–phosphotungstic acid complex nanocomposites as high performance membranes for fuel cell applications

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanocomposite membranes based on polyelectrolyte complex (PEC) of chitosan/phosphotungstic acid (PWA) and different types of montmorillonite (MMT) were prepared as alternative membranes to Nafion for direct methanol fuel cell (DMFC) applications. Fourier transform infrared spectroscopy (FTIR) revealed an electrostatically fixed PWA within the PEC membranes, which avoids a decrease in proton conductivity at practical condition. Various amounts of pristine as well as organically modified MMT (OMMT) (MMT: Cloisite Na, OMMT: Cloisite 15A, and Cloisite 30B) were introduced to the PEC membranes to decrease in methanol permeability and, thus, enhance efficiency and power density of the cells. X-ray diffraction patterns of the nanocomposite membranes proved that MMT (or OMMT) layers were exfoliated in the membranes at loading weights of lower than 3 wt.%. Moreover, the proton conductivity and the methanol permeability as well as the water uptake behavior of the manufactured nanocomposite membranes were studied. According to the selectivity parameter, ratio of proton conductivity to methanol permeability, the PEC/2 wt.% MMT 30B was identified as the optimum composition. The DMFC performance tests were carried out at 70 °C and 5 M methanol feed and the optimum membrane showed higher maximum power density as well as acceptable durability compared to Nafion 117. The obtained results indicated that owing to the relatively high selectivity and power density, the optimum nanocomposite membrane could be considered as a promising polyelectrolyte membrane (PEM) for DMFC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rees NV, Compton RG (2011) J Solid State Electrochem 15:2095–2100

    Article  CAS  Google Scholar 

  2. Hasani-Sadrabadi MM, Ghaffarian SR, Mokarram-Dorri N, Dashtimoghadam E, Majedi FS (2009) Solid State Ion 180:1497–1504

    Article  CAS  Google Scholar 

  3. Haghighi AH, Hasani-Sadrabadi MM, Dashtimoghadam E, Bahlakeh G, Shakeri SE, Majedi FS, Hojjati Emami S, Moaddel H (2011) Int J Hydrogen Energy 36:3688–3696

    Article  CAS  Google Scholar 

  4. Kreuer KD (2001) J Membr Sci 185:29–39

    Article  CAS  Google Scholar 

  5. Smitha B, Sridhar S, Khan A (2004) Macromolecules 37:2233–2339

    Article  CAS  Google Scholar 

  6. Xue S, Yin G (2006) Electro chim Acta 52:847–853

    Article  CAS  Google Scholar 

  7. Hasani-Sadrabadi MM, Dashtimoghadam E, Sarikhani K, Majedi FS, Khanbabaei GJ (2010) J Power Sources 195:2450–2456

    Article  CAS  Google Scholar 

  8. Hasani-Sadrabadi MM, Emami SH, Moaddel H (2008) J Power Sources 183:551–556

    Article  CAS  Google Scholar 

  9. He R, Li Q, Xiao G, Bjerrum NJ (2003) J Membr Sci 226:169–184

    Article  CAS  Google Scholar 

  10. Sakiyama T, Tsutsui T, Masuda E, Imamura K, Nakanishi K (2003) Macromolecules 36:5039–5042

    Article  CAS  Google Scholar 

  11. Zhao Q, An QF, Ji Y, Qian J, Gao C (2011) J Membr Sci 379:19–45

    Article  CAS  Google Scholar 

  12. Thunemann AF, Muller M, Dautzenberg H, Joanny JF, Luwen H (2004) Adv Polym Sci 166:113–171

    Article  Google Scholar 

  13. Arora S, Lal S, Kumar S, Kumar M, Kumar M (2011) Arch Appl Sci Res 3:188–201

    CAS  Google Scholar 

  14. Mirzadeh H, Yaghobi N, Amanpour S, Ahmadi H, Mohagheghi MA, Hormozi F (2002) Iran Polym J 11:63–68

    CAS  Google Scholar 

  15. Ma J, Choudhury NA, Sahai Y, Buchheit RG (2011) J Power Sources 196:8257–8264

    Article  CAS  Google Scholar 

  16. Dashtimoghadam E, Hasani-Sadrabadi MM, Moaddel H (2010) Polym Adv Technol 21:726–734

    Article  CAS  Google Scholar 

  17. Pillai CKS, Paul W, Sharma CP (2009) Prog Polym Sci 34:641–678

    Article  CAS  Google Scholar 

  18. Harish Prashanth KV, Tharanathan RN (2007) Trends Food Sci Tech 18:117–131

    Article  Google Scholar 

  19. Jayakumar R, Nwe N, Tokura S, Tamura H (2007) Int J Biol Macromol 40:175–181

    Article  CAS  Google Scholar 

  20. Jayakumar R, Selvamurugan N, Nair SV, Tokura S, Tamura H (2008) Int J Biol Macromol 43:221–225

    Article  CAS  Google Scholar 

  21. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Eur J Pharm Biopharm 57:19–34

    Article  CAS  Google Scholar 

  22. Yi H, Wu LQ, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, Payne GF (2005) Biomacromolecules 6:2881–2894

    Article  CAS  Google Scholar 

  23. Gümüsoğlu T, Albayrak Ari G, Deligoz H (2011) J Membr Sci 376:25–34

    Article  Google Scholar 

  24. Majid SR, Arof AK (2005) Phys B Condens Matter 355:78–82

    Article  CAS  Google Scholar 

  25. Du J, Bai Y, Chu W, Qiao L (2010) J Polym Sci Part B Polym Phys 48:880–885

    Article  CAS  Google Scholar 

  26. Smitha B, Sridhar S, Khan AA (2005) Eur Polym J 41:1859–1866

    Article  CAS  Google Scholar 

  27. Smitha B, Sridhar S, Khan AA (2006) J Power Sources 159:846–854

    Article  CAS  Google Scholar 

  28. Cui Z, Xing W, Liu C, Liao J, Zhang H (2009) J Power Sources 188:24–29

    Article  CAS  Google Scholar 

  29. Cui Z, Liu C, Lu T, Xing W (2007) J Power Sources 167:94–99

    Article  CAS  Google Scholar 

  30. Hasani-Sadrabadi MM, Dashtimoghadam E, Mokarram N, Majedi FS, Jacob KI (2012) Polym 53:2643–2651

    Article  CAS  Google Scholar 

  31. Zhong S, Cui X, Fu T, Na H (2008) J Power Sources 180:23–28

    Article  CAS  Google Scholar 

  32. Zhao C, Lin H, Cui Z, Li X, Na H, Xing W (2009) J Power Sources 194:168–174

    Article  CAS  Google Scholar 

  33. Yamada M, Honma I (2006) J Phys Chem B 110:20486–20490

    Article  CAS  Google Scholar 

  34. Uma T, Nogami M (2007) Chem Mater 19:3604–3610

    Article  CAS  Google Scholar 

  35. Xu W, Lu T, Liu C, Xing W (2005) Electrochim Acta 50:3280–3285

    Article  CAS  Google Scholar 

  36. Honma I, Nomura S, Nakajima H (2001) J Membr Sci 185:83–94

    Article  CAS  Google Scholar 

  37. Staiti P, Minutoli M, Hocevar S (2003) J Power Sources 90:231–235

    Article  Google Scholar 

  38. Uma T, Nogami M (2007) J Electrochem Soc B 154:845–851

    Article  Google Scholar 

  39. Antolini E, Gonzalez ER (2010) Appl Catal B Environ 96:245–266

    Article  CAS  Google Scholar 

  40. Li L, Xu L, Wang Y (2003) J Mater Sci Letters 22:1595–1597

    Article  CAS  Google Scholar 

  41. Tatsumisago M, Honjo H, Sakai Y, Minami T (1994) Solid State Ion 74:105–108

    Article  CAS  Google Scholar 

  42. Ramani V, Kunz HR, Fenton JM (2005) Electrochim Acta 50:1181–1187

    Article  CAS  Google Scholar 

  43. Miyake N, Wainright JS, Savinell RF (2001) J Electrochem Soc A 148:898–904

    Article  Google Scholar 

  44. Chen Z, Holmberg B, Li W, Wang X, Deng W, Munoz R, Yan Y (2006) J Chem Mater 18:5669–5675

    Article  CAS  Google Scholar 

  45. Alonso RH, Estevez L, Lian H, Kelarakis A, Giannelis EP (2009) Polymer 50:2402–2410

    Article  Google Scholar 

  46. Thomassin JM, Pagnoulle C, Bizzari D, Caldarella G, Germain A, Jerome R (2005) Polym 46:11389–11395

    Article  CAS  Google Scholar 

  47. Song MK, Park SB, Kim YT, Kim KH, Min SK, Rhee HW (2004) Electrochim Acta 50:639–643

    Article  CAS  Google Scholar 

  48. Felice C, Ye S, Qu D (2010) Ind Eng Chem Res 49:1514–1519

    Article  CAS  Google Scholar 

  49. Rhee CH, Kim HK, Chang H, Lee JS (2005) Chem Mater 17:1691–1697

    Article  CAS  Google Scholar 

  50. Kim Y, Lee JS, Rhee SH, Kim HK, Chang H (2006) J Power Sources 162:180–185

    Article  CAS  Google Scholar 

  51. Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS, Hojjati Emami S, Moaddel H (2011) Int J Hydrogen Energy 36:6105–6111

    Article  CAS  Google Scholar 

  52. Choi WC, Kim JD, Woo SI (2001) J Power Sources 96:411–414

    Article  CAS  Google Scholar 

  53. Lue SJ, Shih TS, Wei TC (2006) Korean J Chem Eng 21:441–446

    Article  Google Scholar 

  54. Dupuis A (2011) Prog Mater Sci 56:289–327

    Article  CAS  Google Scholar 

  55. Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS, Kabiri K (2009) J Power Sources 190:318–321

    Article  CAS  Google Scholar 

  56. Hasanabadi N, Ghaffarian SR, Hasani-Sadrabadi MM (2011) Int J Hydrogen Energy 36:15323–15332

    Article  CAS  Google Scholar 

  57. Peckham TJ, Holdcroft S (2010) Adv Mater 22:4667–4690

    Article  CAS  Google Scholar 

  58. Janik MJ, Campbell KA, Bardin BB, Davis RJ, Neurock M (2003) Appl Catal A: General 256:51–68

    Article  CAS  Google Scholar 

  59. Darder M, Colilla M, Ruiz-Hitzky E (2005) Appl Clay Sci 28:199–208

    Article  CAS  Google Scholar 

  60. Günister E, Pestreli D, Ünlü CH, Atıcı O, Güngor N (2007) Carbohydr Polym 67:358–365

    Article  Google Scholar 

  61. Calcagno CW, Mariani CM, Teixeira SR, Mauler RS (2007) Polym 48:966–974

    Article  CAS  Google Scholar 

  62. Bhorodwaj SK, Dutta DK (2010) Appl Catal A: General 378:221–226

    Article  CAS  Google Scholar 

  63. Vijayakumar B, Ranga Rao G (2012) J Porous Mater 19:233–242

    Article  CAS  Google Scholar 

  64. Thomassin JM, Pagnoulle C, Caldarella G, Germain A, Jeromea R (2006) J Membr Sci 270:50–56

    Article  CAS  Google Scholar 

  65. Alexandre B, Langevin D, Médéric P, Aubry T, Couderc H, Nguyen QT, Saiter A, Marais S (2009) J Membrane Sci 328:186–204

    Article  CAS  Google Scholar 

  66. Yoon K, Sung H, Hwang Y, Noh SK, Lee D (2007) Appl Clay Sci 38:38–48

    Article  Google Scholar 

  67. Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS, Kabiri K, Solati-Hashjin K, Moaddel H (2010) J Membr Sci 365:286–293

    Article  CAS  Google Scholar 

  68. Xiang Y, Yang M, Guo Z, Cui Z (2009) J Membr Sci 337:318–323

    Article  CAS  Google Scholar 

  69. Jiang Z, Zheng X, Wu H, Wang J, Wang Y (2008) J Power Sources 180:143–153

    Article  CAS  Google Scholar 

  70. Jiang Z, Zheng X, Wu H, Pan F (2008) J Power Sources 185:85–94

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Reza Ghaffarian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohidian, M., Ghaffarian, S.R., Shakeri, S.E. et al. Organically modified montmorillonite and chitosan–phosphotungstic acid complex nanocomposites as high performance membranes for fuel cell applications. J Solid State Electrochem 17, 2123–2137 (2013). https://doi.org/10.1007/s10008-013-2074-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2074-7

Keywords

Navigation