Skip to main content
Log in

Sound isolation properties of polycarbonate/clay and polycarbonate/silica nanocomposites

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The soundproofing properties of polycarbonate (PC)/nanoclay and PC/nanosilica nanocomposites were studied through testing and theoretical analysis. Nanocomposite sheets with a 3 mm thickness were fabricated by direct hot-compression molding process. The nanoclay and nanosilica particles were incorporated into the PC matrix by a twin-screw extruder. The dispersion efficiency of 1, 3 and 5 wt% nanoclay and nanosilica in the PC matrix was investigated by transmission electron microscopy. Dynamic mechanical analysis was performed for evaluation of mechanical properties of nanocomposites. Sound transmission loss (STL) was measured by an impedance tube over the frequency range of 1600–6300 Hz, and further employed in sound proofing characterizations of nanocomposites. A new finite element model was developed to model the sound transmission loss in impedance tube test. The results showed that the PC/3 wt% nanoclay and 3 wt% nanosilica nanocomposites had an average maximum increase of 5.5 and 6 dB in STL values in the stiffness control region (1600–3600 Hz), respectively. On the other hand, the PC/3 wt% nanoclay and PC/3 wt% nanosilica nanocomposites showed the same sound isolation characteristics in the frequency range of 1600–3600 Hz. In addition, the finite element model developed for modeling the sound transmission loss in the impedance tube demonstrated a good correlation between the theoretical curves and the experimental results in the stiffness control region for both nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee FC, Chen WH (2001) Acoustic transmission analysis of multi-layer absorbers. J Sound Vib 248:621–634

    Article  Google Scholar 

  2. Ivansson SM (2006) Sound absorption by viscoelastic coatings with periodically distributed cavities. J Acoust Soc Am 119:3558–3567

    Article  CAS  Google Scholar 

  3. Natsuki T, Ni QQ (2014) Theoretical analysis of sound transmission loss through graphene sheets. Appl Phys Lett 105:201907

    Article  Google Scholar 

  4. Oudich M, Zhou X, Assouar MB (2014) General analytical approach for sound transmission loss analysis through a thick metamaterial plate. J Appl Phys 116:193509

    Article  Google Scholar 

  5. Toyoda M, Takahashi D (2008) Sound transmission through a microperforated-panel structure with subdivided air cavities. J Acoust Soc Am 124:3594–3603

    Article  Google Scholar 

  6. Mu RL, Toyoda M, Takahashi D (2011) Improvement of sound insulation performance of multilayer windows by using microperforated panel. Acoust Sci Technol 32:79–81

    Article  Google Scholar 

  7. Bravo T, Maury C, Pinhède C (2012) Sound absorption and transmission through flexible micro-perforated panels backed by an air layer and a thin plate. J Acoust Soc Am 131:3853–3863

    Article  Google Scholar 

  8. Mahjoob MJ, Mohammadi N, Malakooti S (2012) Analytical and experimental evaluation of magnetic field effect on sound transmission loss of MR-based smart multi-layered panels. Appl Acoust 73:614–623

    Article  Google Scholar 

  9. Huang C, Nutt S (2011) An analytical study of sound transmission through unbounded panels of functionally graded materials. J Sound Vib 330:1153–1165

    Article  Google Scholar 

  10. Chandra N, Raja S, Gopal KN (2014) Vibro-acoustic response and sound transmission loss analysis of functionally graded plates. J Sound Vib 333:5786–5802

    Article  Google Scholar 

  11. Ng C, Hui C (2008) Low frequency sound insulation using stiffness control with honeycomb panels. Appl Acoust 69:293–301

    Article  Google Scholar 

  12. Tadeu AJ, Mateus DM (2001) Sound transmission through single, double and triple glazing: experimental evaluation. Appl Acoust 62:307–325

    Article  Google Scholar 

  13. Quirt J (1982) Sound transmission through windows: I. single and double glazing. J Acoust Soc Am 72:834–844

    Article  Google Scholar 

  14. Quirt J (1983) Sound transmission through windows: II. double and triple glazing. J Acoust Soc Am 74:534–542

    Article  Google Scholar 

  15. Duquesne S, Jimenez M, Bourbigot S (2014) Aging of the flame-retardant properties of polycarbonate and polypropylene protected by an intumescent coating. J App Polym Sci 131:39566

    Article  Google Scholar 

  16. Beloshenko VA, Voznyak AV, Voznyak YV (2015) Effects of equal-channel, multiple-angular extrusion on the physical and mechanical properties of glassy polymers. J Appl Polym Sci 132:24180

    Article  Google Scholar 

  17. Baick IH, Yang WJ, Ahn YG, Song KH, Choi KY (2015) Structure and properties of ultra-high molecular weight bisphenol a polycarbonate synthesized by solid-state polymerization in amorphous microlayers. J Appl Polym Sci 132:41609

    Article  Google Scholar 

  18. Mallakpour S, Behranvand V (2016) Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal and mechanical applications. Eur Polym J 84:377–403

    Article  CAS  Google Scholar 

  19. Reddy KR, Lee KP, Gopalan AI (2007) Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J Nanosci Nanotechnol 7:3117–3125

    Article  CAS  Google Scholar 

  20. Choi SH, Kim DH, Raghu AV, Reddy KR, Lee HI, Yoon KS, Jeong HM, Kim BK (2012) Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci B 51:197–207

    Article  CAS  Google Scholar 

  21. Verdejo R, Stämpfli R, Alvarez-Lainez M, Mourad S, Rodriguez-Perez M, Brühwiler P, Shaffer M (2009) Enhanced acoustic damping in flexible polyurethane foams filled with carbon nanotubes. Compos Sci Technol 69:1564–1569

    Article  CAS  Google Scholar 

  22. Verdejo R, Saiz-Arroyo C, Carretero-Gonzalez J, Barroso-Bujans F, Rodriguez-Perez MA, Lopez-Manchado MA (2008) Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets. Eur Polym J 44:2790–2797

    Article  CAS  Google Scholar 

  23. Ni QQ, Lu E, Kurahashi N, Kurashiki K, Kimura T (2008) Development of insulation sheet materials and their sound characterization. Adv Compos Mater 17:25–40

    Article  CAS  Google Scholar 

  24. Kim MS, Yan J, Joo KH, Pandey JK, Kang YJ, Ahn SH (2013) Synergistic effects of carbon nanotubes and exfoliated graphite nanoplatelets for electromagnetic interference shielding and soundproofing. J Appl Polym Sci 130:3947–3951

    CAS  Google Scholar 

  25. Ahmadi S, Nassiri P, Ghasemi I, Esmaeilpoor MRM (2015) Sound transmission loss through nanoclay-reinforced polymers. Iran Polym J 24:641–649

    Article  Google Scholar 

  26. Lee JC, Hong YS, Nan RG, Jang MK, Lee CS, Ahn SH, Kang YJ (2008) Soundproofing effect of nano particle reinforced polymer composites. J Mech Sci Technol 22:1468–1474

    Article  Google Scholar 

  27. Liang JZ, Jiang XH (2012) Soundproofing effect of polypropylene/inorganic particle composites. Compos B 43:1995–1998

    Article  CAS  Google Scholar 

  28. Kim MS, Yan J, Kang KM, Joo KH, Pandey JK, Kang YJ, Ahn SH (2013) Soundproofing properties of polypropylene/clay/carbon nanotube nanocomposites. J Appl Polym Sci 130:504–509

    Article  CAS  Google Scholar 

  29. Kim MS, Yan J, Kang KM, Joo KH, Kang YJ, Ahn SH (2013) Soundproofing ability and mechanical properties of polypropylene/exfoliated graphite nanoplatelet/carbon nanotube (PP/xGnP/CNT) composite. Int J Precis Eng Man 14:1087–1092

    Article  Google Scholar 

  30. Saarikoski I, Suvanto M, Pakkanen TA (2009) Modification of polycarbonate surface properties by nano-, micro-, and hierarchical micro–nanostructuring. Appl Surf Sci 255:9000–9005

    Article  CAS  Google Scholar 

  31. Carrion F, Sanes J, Bermúdez MD (2007) Influence of ZnO nanoparticle filler on the properties and wear resistance of polycarbonate. Wear 262:1504–1510

    Article  CAS  Google Scholar 

  32. Carrión FJ, Arribas A, Bermúdez MD, Guillamon A (2008) Physical and tribological properties of a new polycarbonate-organoclay nanocomposite. Eur Polym J 44:968–977

    Article  Google Scholar 

  33. Suin S, Maiti S, Shrivastava NK, Khatua B (2014) Mechanically improved and optically transparent polycarbonate/clay nanocomposites using phosphonium modified organoclay. Mater Des 54:553–563

    Article  CAS  Google Scholar 

  34. Keshavarz R, Ohadi A (2013) Effects of compression on sound absorption of transversely isotropic fibrous materials at oblique incidence. Appl Acoust 74(3):383–395

    Article  Google Scholar 

  35. Kinsler LE, Frey AR, Coppens AB, Sanders JV (1999) Fundamentals of acoustics, 4th edn. Wiley, New York

    Google Scholar 

  36. Mase GT, Smelser RE, Mase GE (2009) Continuum mechanics for engineers. CRC, New York

    Google Scholar 

  37. Panneton R, Atalla N (1996) Numerical prediction of sound transmission through finite multilayer systems with poroelastic materials. J Acoust Soc Am 100:346–354

    Article  Google Scholar 

  38. Sabet SM, Ohadi A (2016) Experimental and theoretical investigation of sound transmission loss for polycarbonate, poly (methyl methacrylate), and glass. J Appl Polym Sci 133:42988

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolreza Ohadi.

Appendix

Appendix

The stiffness matrix \(\left[ K \right]^{(e)}\), mass matrix \(\left[ M \right]^{(e)}\), displacement vector \(\left[ u \right]^{(e)}\) and force vector \(\left[ f \right]^{(e)}\) are defined as follows:

$$\left[ K \right]_{8 \times 8}^{(e)} = \left[ {\begin{array}{*{20}c} {\left[ {K_{rr} } \right]_{4 \times 4} } & {\left[ {K_{rz} } \right]_{4 \times 4} } \\ {\left[ {K_{zr} } \right]_{4 \times 4} } & {\left[ {K_{zz} } \right]_{4 \times 4} } \\ \end{array} } \right]^{(e)} \left[ M \right]_{8 \times 8}^{(e)} = \left[ {\begin{array}{*{20}c} {\left[ {M_{rr} } \right]_{4 \times 4} } & 0 \\ 0 & {\left[ {M_{zz} } \right]_{4 \times 4} } \\ \end{array} } \right]^{(e)}$$
$$\left[ u \right]_{8 \times 1 }^{(e)} = \left[ {\begin{array}{*{20}c} {\left\{ {u_{{r_{m} }} } \right\}_{4 \times 1} } \\ {\left\{ {u_{{z_{m} }} } \right\}_{4 \times 1} } \\ \end{array} } \right]^{(e)} \left[ f \right]_{8 \times 1 }^{(e)} = \left[ {\begin{array}{*{20}c} {\left\{ {f_{{r_{m} }} } \right\}_{4 \times 1} } \\ {\left\{ {f_{{z_{m} }} } \right\}_{4 \times 1} } \\ \end{array} } \right]^{(e)}$$
(17)

As an example, below is the two matrix elements of the stiffness matrix \(\left[ K \right]_{8 \times 8}^{(e)}\):

$$\left[ {K_{rr} } \right]_{4 \times 4} = \left( {K_{b} + \frac{4}{3}G} \right)\int \limits_{0}^{b} \int \limits_{0}^{a} \left\{ {\frac{{\partial N_{m} }}{\partial x}} \right\}\frac{{\partial N_{m} }}{\partial x} 2\pi x\left( {x + r_{1} } \right){\text{d}}x{\text{d}}y + \left( {K_{b} - \frac{2}{3}G} \right)\int \limits_{0}^{b} \int \limits_{0}^{a} \left\{ {\frac{{\partial N_{m} }}{\partial x}} \right\}N_{m} 2\pi {\text{d}}x{\text{d}}y + \left( {K_{b} - \frac{2}{3}G} \right)\int \limits_{0}^{b} \int \limits_{0}^{a} \left\{ {N_{m} } \right\}\frac{{\partial N_{m} }}{\partial x}2\pi {\text{d}}x{\text{d}}y + \left( {K_{b} + \frac{4}{3}G} \right)\int \limits_{0}^{b} \int \limits_{0}^{a} \left\{ {N_{m} } \right\}N_{m} \frac{2\pi }{{\left( {x + r_{1} } \right)}}{\text{d}}x{\text{d}}y + G\int \limits_{0}^{b} \int \limits_{0}^{a} \left\{ {\frac{{\partial N_{m} }}{\partial y}} \right\}\frac{{\partial N_{m} }}{\partial y} 2\pi \left( {x + r_{1} } \right){\text{d}}x{\text{d}}y$$
$$\left[ {K_{rz} } \right]_{4 \times 4} = \left( {K_{b} - \frac{2}{3}G} \right)\int \limits_{0}^{b} \int \limits_{0}^{a} \left\{ {\frac{{\partial N_{m} }}{\partial x}} \right\}\frac{{\partial N_{m} }}{\partial y} 2\pi x\left( {x + r_{1} } \right){\text{d}}x{\text{d}}y + \left( {K_{b} - \frac{2}{3}G} \right)\int \limits_{0}^{b} \int \limits_{0}^{a} \left\{ {N_{m} } \right\}\frac{{\partial N_{m} }}{\partial y}2\pi {\text{d}}x{\text{d}}y + G\int \limits_{0}^{b} \int \limits_{0}^{a} \left\{ {\frac{{\partial N_{m} }}{\partial y}} \right\}\frac{{\partial N_{m} }}{\partial x} 2\pi \left( {x + r_{1} } \right){\text{d}}x{\text{d}}y$$
(18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabet, S.M., Keshavarz, R. & Ohadi, A. Sound isolation properties of polycarbonate/clay and polycarbonate/silica nanocomposites. Iran Polym J 27, 57–66 (2018). https://doi.org/10.1007/s13726-017-0585-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0585-2

Keywords

Navigation