Skip to main content
Log in

Improvements in morphology, mechanical and thermal properties of films produced by reactive blending of poly(lactic acid)/natural rubber latex with dicumyl peroxide

  • Original Paper
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The effect of dicumyl peroxide (DCP) as a free-radical cross-linking agent on the morphology, thermal and mechanical properties, and gas permeation of blown films prepared by reactive blending of poly(lactic acid) (PLA) and natural rubber latex was investigated. In comparison to the blown films without DCP, SEM micrographs revealed that the amount of debonded rubber domains from the cryofractured surface reduced considerably. This was when DCP at 0.003 phr was incorporated and the free radicals from thermally decomposed DCP reacted with PLA and NR chains, generating PLA–NR copolymers and cross-linked NR as confirmed by FTIR spectra. These PLA–NR copolymers acted as compatibilizers, which increased the strength at the PLA/NR interfaces, leading to the improvement in tensile strength, elongation at break, tensile toughness, impact strength, and tear strength. Although DCP did not influence the cold crystallization of PLA, TGA thermograms showed that thermal stability slightly increased owing to the enhanced interfacial adhesion. However, the addition of DCP at 0.005 and 0.010 phr resulted in a high content of cross-linked NR gel, by consuming the free radicals instead in copolymer formation. Therefore, the compatibilization efficiency was significantly reduced and the mechanical properties of reactive PLA/NR blown films finally dropped. Also, this poor interfacial adhesion facilitated the microvoid formation at the polymer–rubber interface as a result of mechanical stretching upon the film blowing process, increasing the permeation of water vapor and oxygen molecules. According to our study, it can be summarized that to optimize the morphology, mechanical properties, and gas permeation property of the free radical-assisted reactive blends, it is of great concern to carefully balance reactive compatibilizer formation and gel formation by adjusting the DCP content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tokiwa Y, Calabia BP, Ugwa CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742

    Article  CAS  Google Scholar 

  2. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Poly-lactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571

    Article  CAS  Google Scholar 

  3. Bitinis N, Verdejo R, Bras J, Fortunati E, Kenny JM, Torre L, López-Manchado MA (2013) Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part I. Processing and morphology. Carbohydr Polym 96:611–620

    Article  CAS  Google Scholar 

  4. Huang T, Yamaguchi M (2017) Effect of cooling conditions on the mechanical properties of crystalline poly(lactic acid). J Appl Polym Sci 134:44960

    Google Scholar 

  5. Siracusa V, Blanco I, Romani S, Tylewicz U, Rocculi P, Rosa MD (2012) Poly(lactic acid)-modified films for food packaging application: physical, mechanical, and barrier behavior. J Appl Polym Sci 125:E390–E401

    Article  CAS  Google Scholar 

  6. Gonçalves CMB, Tomé LC, Garcia H, Brandão L, Mendes AM, Marrucho IM (2013) Effect of natural and synthetic antioxidants incorporation on the gas permeation properties of poly(lactic acid) films. J Food Eng 116:562–571

    Article  Google Scholar 

  7. Serra T, Planell JA, Navarro M (2013) High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater 9:5521–5530

    Article  CAS  Google Scholar 

  8. Gupta P, Nayak KK (2015) Characteristics of protein-based biopolymer and its application. Polym Eng Sci 55:485–498

    Article  CAS  Google Scholar 

  9. Tan BH, Muiruri JK, Li Z, He C (2016) Recent progress in using stereocomplexation for thermal and mechanical property of polylactide. ACS Sustain Chem Eng 4:5370–5391

    Article  CAS  Google Scholar 

  10. Pholharn D, Srithep Y, Morris J (2017) Melt compounding and characterization of poly(lactide) stereocomplex/natural rubber composites. Polym Eng Sci. doi:10.1002/pen.24603

  11. Sungsanit K, Kao N, Bhattacharya SN (2012) Properties of linear poly(lactic acid)/polyethylene glycol blends. Polym Eng Sci 52:108–116

    Article  CAS  Google Scholar 

  12. Shirai MA, Grossmann MVE, Mali S, Yamashita F, Garcia PS, Mülller CMO (2013) Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydr Polym 92:19–22

    Article  CAS  Google Scholar 

  13. Burgos N, Tolaguera D, Fiori S, Jiménez A (2014) Synthesis and characterization of lactic acid oligomers: evaluation of performance as poly(lactic acid) plasticizers. J Polym Environ 22:227–235

    Article  CAS  Google Scholar 

  14. Jiménez A, Peltzer M, Ruseckaite R (2015) Poly(lactic acid) science and technology: processing, properties, additives and applications. Royal Society of Chemistry, Oxfordshire

    Google Scholar 

  15. Chavalitpanya K, Phattanarudee S (2013) Poly(lactic acid)/polycaprolactone blends compatibilized with block copolymer. Energy Proced 34:542–548

    Article  CAS  Google Scholar 

  16. Coltelli M-B, Bronco S, Chinea C (2010) The effect of free radical reactions on structure and properties of poly(lactic acid) (PLA) based blends. Polym Degrad Stab 95:332–341

    Article  CAS  Google Scholar 

  17. Gui Z, Wang HR, Gao Y, Lu C, Cheng S (2012) Morphology and melt rheology of biodegradable poly(lactic acid)/poly(butylene succinate adipate) blends: effect of blend compositions. Iran Polym J 21:81–89

    Article  CAS  Google Scholar 

  18. Chang L, Woo EM (2012) Crystallization of poly(3-hydroxybutyrate) with stereocomplexed polylactide as biodegradable nucleation agent. Polym Eng Sci 52:1413–1419

    Article  CAS  Google Scholar 

  19. Wang S, Pang S, Pan L, Zu N, Huang H, Li T (2016) Compatibilization of poly(lactic acid) ethylene-propylene-diene rubber blends by using organic montmorillonite as a compatibilizer. J Appl Polym Sci 133:44192

    Google Scholar 

  20. Sookprasert P, Hinchiranan N (2015) Preparation of natural rubber-graft-poly(lactic acid) used as a compatibilizer for poly(lactic acid)/NR blends. Macromol Symp 354:125–130

    Article  CAS  Google Scholar 

  21. Ock HG, Ahn KH, Lee SJ, Hyun K (2016) Characterization of compatibilizing effect of organoclay in poly(lactic acid) and natural rubber blends by FT-rheology. Macromolecules 49:2832–2842

    Article  CAS  Google Scholar 

  22. Pattamaprom C, Chareonsalung W, Teerawattananon C, Ausopron S, Prachayawasin P, Puyvelde PV (2016) Improvement in impact resistance of polylactic acid by masticated and compatibilized natural rubber. Iran Polym J 25:169–178

    Article  CAS  Google Scholar 

  23. Ayutthaya WDN, Poompradub S (2014) Thermal and mechanical properties of poly(lactic acid)/natural rubber blend using epoxidized natural rubber and poly(methyl methacrylate) as co-compatibilizers. Macromol Res 22:686–692

    Article  CAS  Google Scholar 

  24. Juntuek P, Ruksakulpiwat C, Chumsamrong P, Ruksakulpiwat Y (2012) Effect of glycidyl methacrylate-grafted natural rubber on physical properties of polylactic acid and natural rubber blends. J Appl Polym Sci 125:745–754

    Article  CAS  Google Scholar 

  25. Yuan D, Xu C, Chen Z, Chen Y (2014) Crosslinked bicontinuous biobased polylactide/natural rubber materials: super toughness, “net-like”-structure of NR phase and excellent interfacial adhesion. Polym Test 38:73–80

    Article  CAS  Google Scholar 

  26. Muthuraj R, Misra M, Mohanty AK (2017) Reactive compatibilization and performance evaluation of miscanthus biofiber reinforced poly(hydroxybutyrate-co-hydroxyvalerate) biocomposites. J Appl Polym Sci 134:44860

    Google Scholar 

  27. Pendle TD, Swinyard PE (1991) The particle size of natural rubber latex concentrates by photon correlation spectroscopy. J Natl Rubb Res 6:1–11

    CAS  Google Scholar 

  28. ASTM D471 Standard test method for rubber property—effect of liquids

  29. ASTM D3616 Standard test method for rubber—determination of gel, swelling index, and dilute solution viscosity

  30. Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid Z Z Polym 251:980–990

    Article  CAS  Google Scholar 

  31. ASTM D882 Standard test method for tensile properties of thin plastic sheeting

  32. ASTM D3420 Standard test method for pendulum impact resistance of plastic film

  33. ASTM D1922 Standard test method for propagation tear resistance of plastic film and thin sheeting by pendulum method

  34. ASTM D3985 Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor

  35. ASTM E398 Standard test method for water vapor transmission rate of sheet materials using dynamic relative humidity measurement

  36. Peacock AJ (2000) Handbook of polyethylene: structures, properties, and applications. CRC, New York

    Google Scholar 

  37. Sundararaj U, Macosko CW (1995) Drop breakup and coalescence in polymer blends. Macromolecules 28:2647–2657

    Article  CAS  Google Scholar 

  38. Gwon JG, Cho HJ, Chun SJ, Lee S, Wu Q, Li MC, Lee SY (2016) Mechanical and thermal properties of toluene diisocyanate-modified cellulose nanocrystal nanocomposites using semi-crystalline poly(lactic acid) as a base matrix. RSC Adv 6:73879–73886

    Article  CAS  Google Scholar 

  39. Nakason C, Nuansomsri K, Kaesaman A, Kiatkamjornwong S (2006) Dynamic vulcanization of natural rubber/high-density polyethylene blends: effect of compatibilization, blend ratio and curing system. Polym Test 25:782–796

    Article  CAS  Google Scholar 

  40. Lipatov YS, Alekseeva TT (2007) Phase-separated interpenetrating polymer networks. Springer, New York

    Book  Google Scholar 

  41. Gopalakrishnan J, Kutty SKN (2013) Mechanical, thermal, and rheological properties of dynamically vulcanized natural rubber-toughened polystyrene. J Elastom Plast 47:153–169

    Article  Google Scholar 

  42. Kaavessina M, Ali I, Al-Zahrani SM (2012) The influences of elastomer toward crystallization of poly(lactic acid). Proced Chem 4:164–171

    Article  CAS  Google Scholar 

  43. Pongtanayut K, Thongpin C, Santawitee O (2013) The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Proced 34:888–897

    Article  CAS  Google Scholar 

  44. Harrats C, Thomas S, Groeninckx G (2006) Micro- and nano-structured multiphase polymer blends systems: phase morphology and interfaces. CRC, New York

    Google Scholar 

  45. Jaratrotkamjorn R, Khaokong C, Tanrattanakul V (2012) Toughness enhancement of poly(lactic acid) by melt blending with natural rubber. J Appl Polym Sci 124:5027–5036

    CAS  Google Scholar 

  46. Samthong C, Seemork J, Nobukawa S, Yanaguchi M, Praserthdam P, Somwangthanaroj A (2015) Morphology, structure, and properties of poly(lactic acid) microporous films containing poly(butylene terephthalate) fine fibers fabricated by biaxial stretching. J Appl Polym Sci 132:41415

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Ratchadaphisek Somphot Fund for Postdoctoral Fellowship, Chulalongkorn University. The authors would like to express our sincere thanks for the financial support to this work under The Institutional Research Grant (The Thailand Research Fund), IRG 5780014, and Chulalongkorn University, Contract No. RES_57_411_21_076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anongnat Somwangthanaroj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deetuam, C., Samthong, C., Pratumpol, P. et al. Improvements in morphology, mechanical and thermal properties of films produced by reactive blending of poly(lactic acid)/natural rubber latex with dicumyl peroxide. Iran Polym J 26, 615–628 (2017). https://doi.org/10.1007/s13726-017-0547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-017-0547-8

Keywords

Navigation