Skip to main content
Log in

A Study of the Divorced Eutectoid Transformation, DET, in Eutectoid Composition Plain Carbon Steel

  • Original Research Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

Experiments on the divorced eutectoid transformation, DET, in eutectoid steel have produced the following conclusions. The maximum rate of continuous cooled steel that produces the DET rather than the pearlite eutectoid transformation, PET, is 0.7 ± 0.4 °C/s. The product microstructure of the DET is not just spheroidite but rather regions of three different microconstituents which will be labeled F, L and S. The F regions consist of pure ferrite, L regions, a coarse lamellar pearlite and S regions spheroidite. The product of the DET is strongly influenced by the initial microstructure of the steel; starting with spheroidite generally produces a spheroidite product while starting with pearlite produces the F, L, S product. In the L regions, the pearlite-like structures are growing into a ferrite matrix; experiments show that the pearlite growing into austenite at 700 °C is finer and harder than that growing into the ferrite during a DET at 700 °C Experiments were done on commercial steels containing levels of carbide forming elements of 900 ppmw. Similar experiments on a high-purity steel found a significant increase in the arrest temperature of the DET and decrease in hardness of the DET product; this result is postulated to be due to a combination of reduced amounts of carbide forming elements as well as S and P in the high-purity steel. Finally, hypotheses are presented for the cause of these results along with possible models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.H. Whiteley, Formation of globular pearlite. J. Iron and Steel Inst. 105, 339–357 (1922)

    Google Scholar 

  2. P. Payson, W.L. Hodapp, J. Leeder, The spheroidization of steel by isothermal transformation. Trans ASM. 28, 306 (1940)

    CAS  Google Scholar 

  3. J.D. Verhoeven, E.D. Gibson, The divorced eutectoid transformation in steel. Met. Mat. Trans. A. 29A, 1181–1189 (1998)

    CAS  Google Scholar 

  4. D.D. Pearson, J.D. Verhoeven, Forced velocity pearlite in high purity Fe-C alloys: Part 1. Experimental. Met. Mater. Trans. A. 15, 1037–1045 (1984)

    Google Scholar 

  5. G.G. Tibetts, Diffusivity of carbon in iron and steels at high temperatures. J. App. Phys. 51, 4813–4816 (1980)

    Google Scholar 

  6. R.F. Smith, The diffusivity and solubility of carbon in alpha iron. Trans. Met. Soc. AIME. 224, 105–111 (1963)

    Google Scholar 

  7. N.V. Luzginnova, L. Zhao, J. Seitsma, The cementite spheroidization process in high carbon steels with different chromium contents. Met. Mat. Trans A. 39A, 513–521 (2008)

    Google Scholar 

  8. A.S. Pandit, H.K.D.H. Bhadishia, Divorced pearlite in steels. Proc. Roy. Soc. A. 10, 1–14 (2012)

    Google Scholar 

  9. H.C. Sorby, On the application of very high powers to the study of the microscopical structure of steel. J. Iron Steel Institute. 1, 140–147 (1886)

    Google Scholar 

  10. H.M. Howe, The metallurgy of steel. Eng. Min. J. 46, 131–132 (1888)

    Google Scholar 

  11. K. Hondo, S. Saito, On the formation of spheroidal cementite. J. Iron Steel Inst. 102(2), 261–269 (1920)

    Google Scholar 

  12. T. Oyama, O.D. Sherby, J. Wadsworth, B. Walser, Application of the divorced eutectoid transformation to the development of fine grained spheroidized structures in ultrahigh carbon steels. Scripta Metall. 18, 799–804 (1984)

    CAS  Google Scholar 

  13. G. Molinder, A quantitative study of the formation of austenite and solution of cementite at different austenitizing temperatures for a 1.27 % carbon steel. Acta Met. 4, 565–71 (1955)

    Google Scholar 

  14. G.A. Roberts, R.F. Mehl, The mechanism and rate of formation of austenite from ferrite-cementite aggregates. Trans. ASM. 154, 613–650 (1943)

    Google Scholar 

  15. S.E. Offerman, L.J.G.W. van Wildern, N.H. van Dijk, J. Seitsma, MTh. Rekveldt, S. van der Zwaag, (2003) In-situ study of pearlite nucleation and growth during isothermal austenite decomposition in nearly eutectoid steels. Acta Materlia. 51, 3917–38 (2003)

    Google Scholar 

  16. K. Ankit, R. Mukherjee, T. Mitnadchi, B. Nestler, Deviation from cooperative growth mode during eutectoid transformation: insights from phase-field approach. Acta Mater. 81, 204–210 (2014)

    CAS  Google Scholar 

  17. K. Ankit, R. Mukherjee, B. Nestler, Deviations from cooperative growth mode during eutectoid transformation: mechanism of polycrystal eutectoid evolution in Fe-C steel. Acta Mater. 97, 316–324 (2015)

    CAS  Google Scholar 

  18. J.M. Hyzak, I.M. Bernstein, The role of microstructure on the strength and toughness of fully pearlitic steel. Met. Trans. A. 7A, 1217–1223 (1974)

    Google Scholar 

  19. J.D. Verhoeven, A.H. Pendray, W.E. Dauksch, The key role of impurities in ancient Damascus steel blades. J. Metals. 50(9), 58–64 (1998)

    CAS  Google Scholar 

  20. J. Perttula, Reproduced wootz Damascus steel. Scand. J. Metallurgy. 33, 92–97 (2004)

    CAS  Google Scholar 

  21. J.D. Verhoeven, A.H. Pendray, W.E. Dauksch, S.R. Wagstaff, Damascus steel revisited. JOM. 70(7), 1331–1336 (2018)

    CAS  Google Scholar 

  22. J.D. Verhoeven, F. Laabs, A.H. Pendray, W.E. Dauksch, Microsegregation and banding in hypereutectoid steel: Damascus steel. Iron Steelmaker. 25(11), 65–74 (1998)

    CAS  Google Scholar 

  23. H.K.D.H. Bhadeshia, Steels for bearings. Progr. Mater. Sci. 57(2), 268–435 (2012)

    CAS  Google Scholar 

  24. S. L. Gertsman, Research and special projects report for 1965, Canadian Dept. Mines and Tech. Surveys, Ottawa Canada (1966)

  25. G.R. Speich, Formation of austenite from ferrite and ferrite-car-bide aggregates. Trans. Met. Soc. AIME. 245, 1063 (1969)

    CAS  Google Scholar 

  26. Yi H.L., Cai H.L., Hou Z.Y., Pang J.C., Wu D. and Wang G.D.: Low density steel 1.2C-1.5Cr-5Al designed for bearings, Mat. Sci and Tech. 30, (9) 1045 -49 (2014).

  27. Z.X. Li, C.S. Li, J.Z. Zhang, B.Z. Li, X.D. Pang, Microstructure of hot rolled 1.0 C-1.5 Cr bearing steel and subsequent spheroidization annealing. Met. Mater. Trans. A. 47A, 3607–21 (2016)

    Google Scholar 

  28. H. Han, L. Du, B. Zhang, Y. Dong, Effect of austenitizing temperature on divorce eutectoid transformation of GCr15 steel. Mat. Sci. and Engr. 562, 012117 (2019)

    CAS  Google Scholar 

  29. D. Qian, H. Wang, L. Pan, F. Wang, X. Lu, Obtaining ultrafine spheroidized carbides by combining warm deformation with divorced eutectoid transformation in GCr15 bearing steels. Mat. Res. Express. 7, 046505 (2020)

    CAS  Google Scholar 

  30. J.C. Pang, W.F. Yang, G.D. Wang, S.J. Zheng, R.D.K. Misra, H.L. Yi, Divorced eutectoid transformation in high Al added steels due to heterogeneous nucleation of k-carbide. Scripta Materalia. 209, 114395 (2022)

    CAS  Google Scholar 

  31. F. Yang, P. Chen, X. Li, The microstructural evolution during divorced eutectoid transformation in a k-carbide reinforced high specific Young’s modulus Steel. Crystals. 12, n1372–n1383 (2022)

    Google Scholar 

  32. D. Qian, B. Chen, F. Wang, L. Wu, Rapid spheroidizing annealing via combined warm deformation with divorced eutectoid transformation in M50 steel. Metals. 12, 359–383 (2022)

    CAS  Google Scholar 

  33. J.D. Vehoeven, The role of the divorced eutectoid transformation (DET) in the spheroidization of 52100 steel. Met Mater Trans. 31A, 2431–2438 (2000)

    Google Scholar 

  34. A. Jacot, M. Rappaz, R.C. Reed, Modelling of re-austenitization from the pearlite structure in steel. Acta Met. 46(11), 3949–3962 (1998)

    CAS  Google Scholar 

  35. A. Jacot, M. Rappaz, A combined model for the description of austenitization, homogenization and grain growth in hypoeutectoid Fe-C steels during heating. Acta Met. 47(5), 1645–1651 (1999)

    CAS  Google Scholar 

  36. G. Shen, C.-W. Zheng, J.-F. Gu, D.-Z. Li, Microscale Cellular automation modeling of interface evolution during re-austenitization from pearlite microstructure in steels. Acta Metallurgica Sinica (English Letters). 31(7), 713–22 (2018)

    CAS  Google Scholar 

  37. F.J. Vermolen, E. Javierre, C. Vuik, L. Zhao, S. van der Zwag, A three dimensional model for particle dissolution in ternary alloys. Comput. Mat. Sci. 39, 767–774 (2007)

    CAS  Google Scholar 

  38. Z.-D. Li, G. Miyamato, Z.-G. Yang, T. Furhara, Kinetics of reverse transformation from pearlite to austenite in an Fe – 0.6 mass percent C alloy and the effects of alloying elements. Met. Mater. Trans. A. 42A, 1356–96 (2011)

    Google Scholar 

  39. Z.-D. Li, G. Miyamato, Z.-G. Yang, T. Furhara, Nucleation of austenite from pearlite structure in an Fe- 0.6 C – 1Cr steel. Scripta Mater. 60, 485–88 (2009)

    CAS  Google Scholar 

  40. Z.-X. Li, C.-S. Li, J. Zhang, B.-Z. Li, X.-D. Pang, Microstructure of hot rolled 1.0 Cr – 1.5 Cr bearing steel and subsequent spheroidization anneal. Met. Mater. Trans. A. 47, 1607–21 (2016)

    Google Scholar 

  41. F.L.G. Oliverira, M.S. Andrade, A.B. Cota, Kinetics of austenite formation during continuous heating in a low carbon steel. Mat. Char. 58, 256–261 (2007)

    Google Scholar 

  42. Y.J. Chae, J.-H. Jang, G. Zhang, K.-H. Kim, J.S. Lee, H. Bhadeshia, D.W. Suh, Dilatometric analysis of cementite dissolution in hypereutectoid steels containing Cr. Scripta Mat. 65, 245–248 (2011)

    CAS  Google Scholar 

  43. C. Garcia de Andres, F.G. Caballero, C. Capdevila, H. Bhadshia, Modelling of kinetics and dilatometer behavior of non-isothermal pearlite-to-austenite transformation in an eutectoid steel. Scripta Mater. 19, 791–96 (1998)

    Google Scholar 

  44. F.G. Caballero, C. Capdevila, C. Garcia de Andres, Modelling of kinetics of austenite formation in steels with different microstructures. ISIJ Int. 41(10), 1093–1102 (2001)

    CAS  Google Scholar 

  45. B. Pawlowski, Critical points of hypoeutectoid steel – prediction of the pearlite dissolution finish temperature Ac1f. J. Ach. Mater. Manuf. Eng. 49, 331–37 (2011)

    Google Scholar 

  46. J. Epp, H. Surm, O. Kessler, T. Hirsch, In situ x-ray investigation and computer simulation during continuous heating in a ball bearing steel. Met. Mater. Trans. A. 38A, 2371–2378 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

The experimental work was done in the two metallurgy shops of the two authors. The high-purity steel was donated by the Materials Preparation Center of the Ames National Laboratory, Iowa State University. Chemical analyses done at Chicago Spectro Laboratory were funded by W.E. Dauksch, retired vice president Nucor Steel. Mark Schmidt at Nucor Steel Mill, Darlington, SC. carried out the additional chemical analysis of the Jantz steel. Most of the literature search was done with the aid of the libraries of Iowa State University and the University of Minnesota.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Verhoeven.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zowada, T., Verhoeven, J.D. A Study of the Divorced Eutectoid Transformation, DET, in Eutectoid Composition Plain Carbon Steel. Metallogr. Microstruct. Anal. 13, 3–17 (2024). https://doi.org/10.1007/s13632-023-01027-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-023-01027-0

Keywords

Navigation