Skip to main content
Log in

Dislocation Density Evolution During Creep of AZ31 Mg Alloy: A Study by X-ray Diffraction Line Profile Analysis

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

X-ray diffraction line profile analysis technique was employed to investigate the dislocation density evolution during high temperature creep of Mg-3Al-1Zn alloy. The microstrains within the domain and dislocation density were calculated by the simplified Williamson–Hall and Williamson–Smallman methods. Further analysis on the possible dynamic recrystallization (DRX) and dynamic recovery (DRV) shows a relation between the number of dynamically recrystallized grains and the dislocation density. At constant temperature, higher stresses lead to more DRX and an enhancement on the dislocation density; whereas, at lower stresses the DRV is dominant leading to decrease in the dislocation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Farahbakhsh, P. Shahbeigi Roodposhti, A.S. Ayoub, R.A. Venditti, and J.S. Jur, Melt Extrusion of polyethylene nanocomposites reinforced with nanofibrillated cellulose from cotton and wood sources. J. Appl. Polym. Sci. (2014), in press

  2. P. Shahbeig Roodposhti, N. Farahbakhsh, A. Sarkar, K.L. Murty, A microstructural approach to the equal channel angular processing of commercially pure titanium—a review. Trans. Nonferrous Met. Soc. China 25, 1353–1366 (2015)

    Article  Google Scholar 

  3. S. Ansary, R. Mahmudi, M.J. Esfandyarpour, Creep of AZ31 Mg alloy: a comparison of impression and tensile behavior. Mater. Sci. Eng. A 556, 9–14 (2012)

    Article  Google Scholar 

  4. B. Kondori, R. Mahmudi, Impression creep characteristics of a cast Mg alloy. Metall. Mater. Trans. A 40(8), 2007–2015 (2009)

    Article  Google Scholar 

  5. Y. Chino, K. Sassa, A. Kamiya, M. Mabuchi, Stretch formability at elevated temperature of a cross-rolled AZ31 Mg alloy sheet with different rolling routes. Mater. Sci. Eng. A 473(1–2), 195–200 (2008)

    Article  Google Scholar 

  6. P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, Fracture behavior of AZ31 magnesium alloy during low stress high temperature deformation. Metallogr. Microstruct. Anal. 4, 91–101 (2015)

    Article  Google Scholar 

  7. P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, Microstructure development of high temperature deformed AZ31 magnesium alloys. Mater. Sci. Eng. A 626, 195–202 (2015)

    Article  Google Scholar 

  8. R. Korla, A.H. Chokshi, A constitutive equation for grain boundary sliding: an experimental approach. Metall. Mater. Trans. A 45(2), 698–708 (2013)

    Article  Google Scholar 

  9. R.B. Figueiredo, T.G. Langdon, Developing superplasticity in a magnesium AZ31 alloy by ECAP. J. Mater. Sci. 43(23–24), 7366–7371 (2008)

    Article  Google Scholar 

  10. S. Spigarelli, M. El Mehtedi, D. Ciccarelli, M. Regev, Effect of grain size on high temperature deformation of AZ31 alloy. Mater. Sci. Eng. A 528(22–23), 6919–6926 (2011)

    Article  Google Scholar 

  11. S. Spigarelli, M. El Mehtedi, M. Cabibbo, E. Evangelista, J. Kaneko, A. Jäger, V. Gartnerova, Analysis of high-temperature deformation and microstructure of an AZ31 magnesium alloy. Mater. Sci. Eng. A 462(1–2), 197–201 (2007)

    Article  Google Scholar 

  12. H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa, K. Higashi, Dislocation creep behavior in Mg–Al–Zn alloys. Mater. Sci. Eng. A 407(1–2), 53–61 (2005)

    Article  Google Scholar 

  13. K. Ishikawa, H. Watanabe, T. Mukai, High temperature compressive properties over a wide range of strain rates in an AZ31 magnesium alloy. J. Mater. Sci. 40(7), 1577–1582 (2005)

    Article  Google Scholar 

  14. A.G. Beer, M.R. Barnett, Influence of initial microstructure on the hot working flow stress of Mg–3Al–1Zn. Mater. Sci. Eng. A 423(1–2), 292–299 (2006)

    Article  Google Scholar 

  15. S.-H. Choi, J.K. Kim, B.J. Kim, Y.B. Park, The effect of grain size distribution on the shape of flow stress curves of Mg–3Al–1Zn under uniaxial compression. Mater. Sci. Eng. A 488(1–2), 458–467 (2008)

    Article  Google Scholar 

  16. H.-K. Kim, W.-J. Kim, Creep behavior of AZ31 magnesium alloy in low temperature range between 423 and 473 K. J. Mater. Sci. 42(15), 6171–6176 (2007)

    Article  Google Scholar 

  17. J.A.D.E.L. Valle, O.A. Ruano, Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction. Metall. Mater. Trans. A 36(June), 1427–1438 (2005)

    Article  Google Scholar 

  18. S.W. Chung, C.S. Chung, D. Kum, Super plasticity in thin Magnesium alloy sheets and deformation mechanism maps for magnesium. Acta Mater. 49, 3337–3345 (2001)

    Article  Google Scholar 

  19. K. Kitazono, E. Sato, K. Kuribayashi, Internal stress superplasticity in polycrystalline AZ31 magnesium alloy. Scr. Mater. 44(12), 2695–2702 (2001)

    Article  Google Scholar 

  20. H. Somekawa, T. Mukai, Molecular dynamics simulation of grain boundary plasticity in magnesium and solid-solution magnesium alloys. Comput. Mater. Sci. 77, 424–429 (2013)

    Article  Google Scholar 

  21. P. Shahbeigi Roodposhti, A. Sarkar, K.L. Murty, in Creep Deformation Mechanisms and Related Microstructure Development of AZ31 Magnesium Alloy. Magnesium Technology (2015), pp. 29–34

  22. I. Gutierrez-Urrutia, D. Raabe, Dislocation density measurement by electron channeling contrast imaging in a scanning electron microscope. Scr. Mater. 66(6), 343–346 (2012)

    Article  Google Scholar 

  23. P. Mukherjee, A. Sarkar, P. Barat, S.K. Bandyopadhyay, P. Sen, S.K. Chattopadhyay, P. Chatterjee, S.K. Chatterjee, M.K. Mitra, Deformation characteristics of rolled zirconium alloys: a study by X-ray diffraction line profile analysis. Acta Mater. 52(19), 5687–5696 (2004)

    Article  Google Scholar 

  24. G. Dini, R. Ueji, A. Najafizadeh, S.M. Monir-Vaghefi, Flow stress analysis of TWIP steel via the XRD measurement of dislocation density. Mater. Sci. Eng. A 527(10–11), 2759–2763 (2010)

    Article  Google Scholar 

  25. A. Sarkar, A. Bhowmik, S. Suwas, Microstructural characterization of ultrafine-grain interstitial-free steel by X-ray diffraction line profile analysis. Appl. Phys. A Mater. Sci. Process. 94(4), 943–948 (2009)

    Article  Google Scholar 

  26. A. Sarkar, P. Mukherjee, P. Barat, X-ray diffraction studies on asymmetrically broadened peaks of heavily deformed zirconium-based alloys. Mater. Sci. Eng. A 485(1–2), 176–181 (2008)

    Article  Google Scholar 

  27. A. Sarkar, K.L. Murty, Microstructure–mechanical property correlation of cryo rolled Zircaloy-4. J. Nucl. Mater. 456, 287–291 (2015)

    Article  Google Scholar 

  28. G. Williamson, W. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953)

    Article  Google Scholar 

  29. G.K. Williamson, R.E. Smallman, III. Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum. Philos. Mag. 1(1), 34–46 (1956)

    Article  Google Scholar 

  30. S. Mandal, A.K. Bhaduri, V. Subramanya, Sarma, A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel. Metall. Mater. Trans. A 42(4), 1062–1072 (2010)

    Article  Google Scholar 

  31. J. Deng, Y.C. Lin, S. Li, J. Chen, Y. Ding, Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy. Mater. Des. 49, 209–219 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by grants NSF0968825 and DE-NE0000538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiman Shahbeigi Roodposhti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roodposhti, P.S., Sarkar, A., Murty, K.L. et al. Dislocation Density Evolution During Creep of AZ31 Mg Alloy: A Study by X-ray Diffraction Line Profile Analysis. Metallogr. Microstruct. Anal. 4, 337–343 (2015). https://doi.org/10.1007/s13632-015-0220-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-015-0220-6

Keywords

Navigation