Skip to main content
Log in

Effects of light quality on growth, photosynthetic characteristics, and endogenous hormones in in vitro-cultured Lilium plantlets

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Red (R, 640 nm) and blue (B, 464 nm) light are the most important regions in the spectrum absorbed by plants. Lilium plantlets cultured in vitro were exposed to 40 ± 2 μmol m−1 s−1 irradiance (spectral range: 400–800 nm) supplied by plant-growth fluorescent lamps (PGFL) under a 12-h light/12-dark photoperiod and cultured for 50 days under six light quality treatments: control (PGFL only); R (100% R); R:B = 8:2; R:B = 7:3; R:B = 5:5; B (100% B). Plant height and leaf number increased with increasing R light, and increasing B light inhibited fresh weight accumulation. The R:B = 7:3 treatment resulted in the highest pigment contents (chlorophyll b, carotenoids, total chlorophyll), photosynthetic indicator values (net photosynthetic rate, stomatal conductance, and intercellular CO2 concentration), and chlorophyll fluorescence parameters (maximal efficiency of photosystem II, relative quantum efficiency of photosystem II photochemistry, and photochemical quenching). The highest contents of total sugars, fructose, sucrose, and soluble protein in leaves were in the B-only treatment. At day 50, the trans-zeatin content was higher in the B-only treatment than in the R-only treatment, while the cis-zeatin content showed the opposite trend. The highest levels of indole acetic acid and gibberellin were in the R-only treatment, and the highest abscisic acid content was in the B-only treatment on day 50. We conclude that R light promoted stem elongation and leaf number, and B light increased the sugars and soluble protein contents in Lilium cultured in vitro. The R:B = 7:3 treatment was optimal for photosynthesis. These results will be useful for producing high-quality Lilium plants in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

IAA:

Indole-3-acetic acid

NAA:

1-Naphthaleneacetic acid

6-BA:

6-Benzylaminopurine acid

MS:

Murashige-Skoog medium

ZT:

Zentin

GA3 :

Gibberellin

ABA:

Abscisic acid

Pn:

Net photosynthetic rate

gs :

Stomatal conductance

Ci:

Intercellular CO2 concentration

Fv/Fm :

Maximal PSII efficiency

ΦPSII:

Relative quantum efficiency of PSII photochemistry

qP:

Photochemical quenching

NPQ:

Non-photochemical quenching

MDA:

Malondialdehyde

SPS:

Sucrose phosphate synthase

SS:

Sucrose synthase

References

  • Assmann SM, Shimazaki KI (1999) The multisensory guard cell. Stomatal responses to blue light and abscisic acid. Plant Physiol 119:809–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacelar EA, Santos DL, Moutinhopereira JM, Goncalves BC, Ferreira HF, Correia CM (2006) Immediate responses and adaptive strategies of three olive cultivars under contrasting water availability regimes: changes on structure and chemical composition of foliage and oxidative damage. Plant Sci 170:596–605

    Article  CAS  Google Scholar 

  • Bradford E (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown CS, Schuerger AC, Sager JC (1995) Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J Am Soc Hortic Sci 120:808–813

    Article  CAS  PubMed  Google Scholar 

  • Bula RJ, Morrow TW, Tibbitts TW, Barta DJ, Ignatius RW, Martin TS (1991) Light-emitting diodes as a radiation source for plants. HortScience 26:203–205

    Article  CAS  PubMed  Google Scholar 

  • Buysse J, Merckx R (1993) An improved colorimetric method to quantify sugar content of plant tissue. J Exp Bot 44:1627–1629

    Article  CAS  Google Scholar 

  • Calatayud A, Barreno E (2004) Response to ozone in two lettuce varieties on chloro-phyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiol Biochem 42:549–555

    Article  CAS  PubMed  Google Scholar 

  • Calderon RH (2020) Red leds leave plants singing the blues. Physiol Plantarum 169(1):7–9

    Article  CAS  Google Scholar 

  • Carvalho RF, Takaki M, Azevedo RA (2011) Plant pigments: the many faces of light perception. Acta Physiolo Plantarum 33:241–248

    Article  CAS  Google Scholar 

  • Chang S, Li C, Yao X, Chen S, Jiao X, Liu X, Xu Z, Guan R (2016) Morphological, photosynthetic, and physiological responses of rapeseed leaf to different combinations of red and blue lights at the rosette stage. Front Plant Sci 7:1144

    Google Scholar 

  • Chen S, Hajirezaei M, Börnke F (2005) Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves. Plant Physiol 139:1163–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XL, Guo WZ, Xue XZ, Wang LC, Qiao XJ (2014) Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Sci Hortic 172:168–175

    Article  Google Scholar 

  • Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinestra SC, Curvetto NR, Marinangeli PA (2015) Production of virus-free plants of Lilium spp. from bulbs obtained in vitro and ex vitro. Sci Hortic 194:304–312

    Article  Google Scholar 

  • Courbier S (2020) How far-red light enrichment modulates tomato resistance towards Botrytis cinerea

  • Daszkowska-Golec A, Szarejko I (2013) Open or close the gate-stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci 4:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (eds) Plant hormones. Springer Dordrecht. doi:https://doi.org/10.1007/978-1-4020-2686-7_1

  • Dong C, Fu Y, Liu G, Liu H (2014) Growth, photosynthetic characteristics, antioxidant capacity and biomass yield and quality of wheat (Triticum aestivum L.) exposed to LED light sources with different spectra combinations. J Agron Crop Sci 200:219–230

    Article  CAS  Google Scholar 

  • Dutta GS, Karmakar A (2017) Machine vision based evaluation of impact of light emitting diodes (leds) on shoot regeneration and the effect of spectral quality on phenolic content and antioxidant capacity in swertia chirata. J Photochem Photobiol B, Biol 174:162–172

    Article  Google Scholar 

  • Efimova MV, Vankova R, Kusnetsov VV, Litvinovskaya RP, Zlobin IE, Dobrev P, Vedenicheva NP, Savchuk AL, Karnachuk RA, Kudryakova NV, Kuznetsov W (2017) Effects of 24-epibrassinolide and green light on plastid gene transcription and cytokinin content of barley leaves. Steroids 120:32–40

    Article  CAS  PubMed  Google Scholar 

  • El-Sheekh M, Morsi H, Hassan L (2020) Assessment of the optimum growth medium and the effect of different light intensities on growth and photosynthetic pigments of Chlorella vulgaris and Scenedesmus arvernensis. Egypt J Bot 60(2):395–404

    Google Scholar 

  • Eskins K, Jiang CZ, Shibles R (1991) Light quality and irradiance effects on pigments, light harvesting proteins and Rubisco activity in a chlorophyll and light harvesting deficient soybean mutant. Physiolo Plantarum 83:47–53

    Article  CAS  Google Scholar 

  • Fan XX, Xu ZG, Liu XY, Tang CM, Wang LW, Han XL (2013) Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci Hortic 153:50–55

    Article  Google Scholar 

  • Fnt A, Gz B (2021) Microbulb and plantlet formation of a native bulbous flower, Lilium monodelphum M. Bieb, var. Armenum, through tissue culture propagation. Biotechnol Rep 32:e00665

  • Francis JA, Rumbeiha W, Nair MG (2004) Constituents in Easter lily flowers with medicinal activity. Life Sci 76:671–683

    Article  CAS  PubMed  Google Scholar 

  • Fukuda N, Ajima C, Yukawa T, Olsen JE (2016) Antagonistic action of blue and red light on shoot elongation in petunia depends on gibberellin, but the effects on flowering are not generally linked to gibberellin. Environ Exp Bot 121:102–111

    Article  CAS  Google Scholar 

  • Gibon Y, Pyl ET, Sulpice R, Lunn JE, Hoehne M, Guenther M, Stitt M (2009) Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell Environ 32:859–874

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, White PJ (2008) Sucrose transport in the phloem: integrating root responses to phosphorus starvation. J Exp Bot 59:93–109

    Article  CAS  PubMed  Google Scholar 

  • He J, Qin L, Chong EL, Choong TW, Lee SK (2017) Plant growth and photosynthetic characteristics of mesembryanthemum crystallinum grown aeroponically under different blue-and red-LEDs. Front Plant Sci 8:361

    Article  PubMed  PubMed Central  Google Scholar 

  • He C, Zeng Y, Fu Y, Wu J, Liang Q (2020) Light quality affects the proliferation of in vitro cultured plantlets of Camellia oleifera Huajin. PeerJ 8(3):e10016

    Article  PubMed  PubMed Central  Google Scholar 

  • Heo J, Lee C, Chakrabarty D, Paek K (2002) Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a Light-Emitting Diode (LED). Plant Growth Regul 38(3):225–230

    Article  CAS  Google Scholar 

  • Hernández R, Kubota C (2016) Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ Exp Bot 121:66–74

    Article  Google Scholar 

  • Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, Ieperen WV, Harbinson J (2010) Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61:3107–3117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard NL, Huber SC, Pharr DM (1989) Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiol 91:1527–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilieva I, Ivanova T, Naydenov Y, Dandolov I, Stefanov D (2010) Plant experiments with light-emitting diode module in svet space greenhouse. Adv Space Res 46:840–845

    Article  CAS  Google Scholar 

  • Inoue S, Takemiya A, Shimazaki K (2010) Phototropin signaling and stomatal opening as a model case. Curr Opin Plant Biol 13:587–593

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi M, Singh K, Anand A, Sindhu SS (2021) Estimation of endogenous indole-3-acetic acid in leaf explants and a protocol for direct regeneration in Lilium cv. Pavia. In Vitro Cell Dev - Pl 127:1–6

    Google Scholar 

  • Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230

    Article  CAS  PubMed  Google Scholar 

  • Jin E, Yokthongwattana K, Polle JE, Melis A (2003) Role of the reversible xanthophyll cycle in the photosystem II damage and repair cycle in Dunaliella salina. Plant Physiol 132:352–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johkan M, Shoji K, Goto F, Hashida SN, Yoshihara T (2010) Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809–1814

    Article  Google Scholar 

  • Keyser ED, Dhooghe E, Christiaens A, Labeke MCV, Huylenbroeck JV (2019) LED light quality intensifies leaf pigmentation in ornamental pot plants. Sci Hortic 253:270–275

    Article  Google Scholar 

  • Kim JI, Murphy AS, Baek D, Lee SW, Yun DJ, Bressan RA, Narasimhan ML (2011) YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot 62:3981–3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Hahn EJ, Heo JW, Paek KY (2004) Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci Hortic 101:143–151

    Article  Google Scholar 

  • Kong Y, Sun M, Pan HT, Zhang QX (2012) Composition and emission rhythm of floral scent volatiles from eight lily cut flowers. J Am Soc Hortic Sci 137:376–382

    Article  CAS  Google Scholar 

  • Koton A, Wojciechowska R, Dugosz-Grochowska O, Kunicki E, Bathelt P (2020) LED lighting affected the growth and metabolism of eggplant and tomato transplants in a greenhouse. Hortic Sci 47:150–157

    Article  Google Scholar 

  • Kurepin LV, Shah S, Reid DM (2007) Light quality regulation of endogenous levels of auxin, abscisic acid and ethylene production in petioles and leaves of wild type and ACC deaminase transgenic brassica napus seedlings. Plant Growth Regul 52:53–60

    Article  CAS  Google Scholar 

  • Kurepin LV, Walton LJ, Hayward A, Emery RN, Pharis RP, Reid DM (2012) Interactions between plant hormones and light quality signaling in regulating the shoot growth of Arabidopsis thaliana seedlings. Botany 90:237–246

    Article  CAS  Google Scholar 

  • Lee SH, Tewari RK, Hahn EJ, Pack KY (2007) Photon flux and light qualityinduce changes in growth, stomatal development, photosynthesis and transpi-ration of Withania somnifera (L.) Dunal. plantlets. Plant Cell Tissue Organ Cult 90:141–151

    Article  CAS  Google Scholar 

  • Li H, Tang C, Xu Z (2013) The effects of different light qualities on rapeseed (brassica napus L.) plantlet growth and morphogenesis in vitro. Sci Hortic 150:117–124

    Article  Google Scholar 

  • Li JF, Yi CY, Zhang CR, Pan F, Xie C, Zhou WZ, Zhou CF (2021a) Effects of light quality on leaf growth and photosynthetic fluorescence of Brasenia schreberi seedlings. Heliyon 7(1)

  • Li Y, Liu C, Shi QH, Yang FJ, Wei M (2021b) Mixed red and blue light promotes ripening and improves quality of tomato fruit by influencing melatonin content. Environ Exp Bot 185:104407

    Article  CAS  Google Scholar 

  • Li Y, Xin GF, Liu C, Shi QH, Yang FJ, Wei M (2020) Effects of red and blue light on leaf anatomy, CO2 assimilation and the photosynthetic electron transport capacity of sweet pepper (Capsicum annuum L.) seedlings. BMC Plant Biol 20:318

  • Lichtenthaler HK, Babani F (2004) Light adaptation and senescence of the photosynthetic apparatus. Changes in pigment composition, chlorophyll fluorescence parameters and photosynthetic activity. Chlorophyll a Fluorescence (Dordrecht, The Netherlands Springer), pp 713–736

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 603:591–592

    Article  Google Scholar 

  • Lin KH, Huang MY, Huang WD, Hsu MH, Yang ZW, Yang CM (2013) The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci Hortic 150:86–91

    Article  Google Scholar 

  • Liu MX, Xu ZG, Yang Y, Feng YJ (2011) Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell Tissue Organ Cult 106:1–10

    Article  Google Scholar 

  • Lohse G, Hedrich R (1992) Characterization of the plasma-membrane H+-ATPase from Vicia faba guard cells. Planta 188:206–214

    Article  CAS  PubMed  Google Scholar 

  • Mantilla G, Lorenzo GA, Mascarini L (2021) Hormonal endogenous changes in response to the exogenous 6-benzylaminopurine application in pre- and post-harvesting lilium flower stalks. Ornamental Hortic 3:357–364

    Article  Google Scholar 

  • Marco AA, Souza R, Santos JF, Rocha RN, Santos AMD (2020) Productive, metabolic and anatomical parameters of menthol mint are infl uenced by light intensity. An Acad Bras Ciênc 92(S2):20180321

    Google Scholar 

  • Matsuda R, Ohashi-Kaneko K, Fujiwara K, Goto E, Kurata K (2004) Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. Plant Cell Physiol 45:1870–1874

    Article  CAS  PubMed  Google Scholar 

  • Moosavi-Nezhad M, Salehi R, Aliniaeifard S, Tsaniklidis G, Kalaji HM (2021) Supplementary materials - Blue Light Improves Photosynthetic Performance during Healing and Acclimatization of Grafted Watermelon Seedlings

  • Muneer S, Kim EJ, Park JS, Lee JH (2014) Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Int J Mol Sci 15:4657–4670

    Article  PubMed  PubMed Central  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Murcia G, Pontin M, Reinoso H, Baraldi R, Bertazza G, Gómeztalquenca S, Bottini R, Piccoli PN (2016) ABA and GA3 increase carbon allocation in different organs of grapevine plants by inducing accumulation of non-structural carbohydrates in leaves, enhancement of phloem area and expression of sugar transporters. Physiol Plantarum 156:323–337

    Article  CAS  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983–3998

    Article  CAS  PubMed  Google Scholar 

  • Nagao M, Minami A, Arakawa K, Fujikawa S, Takezawa D (2005) Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens. J Plant Physiol 162:169–180

    Article  CAS  PubMed  Google Scholar 

  • Naoya F, Mitsuko F, Yoshitaka O, Sadanori S, Shigeo N, Hiroshi E (2008) Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Sci Hortic 115:176–182

    Article  Google Scholar 

  • Nguye-Quoc B, Foyer CH (2001) A role for ‘futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit. J Exp Bot 52:881–889

    Article  Google Scholar 

  • Nguyen TPD, Jang DC, Tran TTH, Nguyen QT, Vu NT (2021) Influence of Green Light Added with Red and Blue LEDs on the Growth, Leaf Microstructure and Quality of Spinach (Spinacia oleracea L.). Agron 11(9):1724

  • Nhut DT, Takamura T, Watanabe H, Okamoto K, Tanaka M (2003) Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tissue Organ Cult 73:43–52

    Article  CAS  Google Scholar 

  • Nikanovich TV, Trofimov YV, Barkun MI (2021) The impact of LED lightning on the content of photosynthetic pigments in tomato leaves. Vegetable Crop Russia 1:117–120

    Article  Google Scholar 

  • Ouzounis T, Fretté X, Ottosen CO, Rosenqvist E (2015) Spectral effects of LEDs on chlorophyll fluorescence and pigmentation in Phalaenopsis ‘Vivien’and ‘Purple Star.’ Physiol Plantarum 154:314–327

    Article  CAS  Google Scholar 

  • Pan QH, Li MJ, Peng CC, Zhang N, Zou X, Zou KQ, Wang XL, Yu XC, Wang XF, Zhang DP (2005) Abscisic acid activates acid invertases in developing grape berry. Physiol Plantarum 125:157–170

    Article  CAS  Google Scholar 

  • Paponov M, Kechasov D, Lacek J, Verheul MJ, Paponov IA (2020) Supplemental light-emitting diode inter-lighting increases tomato fruit growth through enhanced photosynthetic light use efficiency and modulated root activity. Front Plant Sci 10:1656

  • Park YG, Muneer S, Jeong BR (2015) Morphogenesis, flowering, and gene expression of Dendranthema grandiflorum in response to shift in light quality of night interruption. Int J Mol Sci 16(7):16497–16513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajapakse NC, Pollock RK, McMahon MJ (1992) Interpretation of light quality measurements and plant response in spectral filter research. HortScience 27:1208–1211

    Article  Google Scholar 

  • Roso R, Nunes UR, Müller CA, Paranhos JT (2020) Light quality and dormancy overcoming in seed germination of Echium plantagineum L. (Boraginaceae). Braz J Biol 82(2)

  • Ruban AV, Berera R, Ilioaia C, Van Stokkum IH, Kennis JT, Pascal AA, Van Amerongen H, Robert B, Horton P, Van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578

    Article  CAS  PubMed  Google Scholar 

  • Saebo A, Krekling T, Appelgren M (1995) Light quality affects photosynthesis and leaf anatomy of brich plantlets in vitro. Plant Cell Tissue Organ Cult 41:177–185

    Article  Google Scholar 

  • Shang WQ, Wang Z, He SL, He D, Liu YP, Fu ZZ (2017) Research on the relationship between phenolic acids and rooting of tree peony (paeonia suffruticosa) plantlets in vitro. Sci Hortic 224:53–60

    Article  CAS  Google Scholar 

  • Shi L, Cao S, Shao J, Chen W, Yang Z, Zheng Y (2016) Chinese bayberry fruit treated with blue light after harvest exhibit enhanced sugar production and expression of cryptochrome genes. Postharvest Biol Tec 111:197–204

    Article  CAS  Google Scholar 

  • Shin KS, Murthy HN, Heo JW, Hahn EJ, Paek KY (2008) The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol Plant 30:339–343

    Article  CAS  Google Scholar 

  • Siegel MR, Sisler HD (1963) Inhibition of protein synthesis in vitro by cycloheximide. Nature 200:675–676

    Article  CAS  PubMed  Google Scholar 

  • Song YL, Shang WQ, Ma DD, Wang Z, He SL, Shi LY, Shen YX, He D, Wang EQ, Wang XH (2022) Effect on the growth and photosynthetic characteristics of Anthurium andreanum (‘Pink Champion’, ‘Alabama’) under hydroponic culture by different LED light spectra. Horticulturae 8:389

  • Staswick PE, Tiryaki I, Rowe ML (2002) Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acid in an assay for adenylation. Plant Cell 14:1405–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuefer JF, Huber H (1998) Differential effects of light quantity and spectral light quality on growth, morphology and development of two stoloniferous Potentilla species. Oecologia 117:1–8

    Article  PubMed  Google Scholar 

  • Su N, Wu Q, Shen Z, Xia K, Cui J (2014) Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings. Plant Growth Regul 73:227–235

    Article  CAS  Google Scholar 

  • Takase T, Nakazawa M, Ishikawa A, Manabe K, Matsui M (2003) DFL2, a new member of the Arabidopsis GH3 gene family, is involved in red light-specific hypocotyl elongation. Plant Cell Physiol 44:1071–1080

    Article  CAS  PubMed  Google Scholar 

  • Talbott LD, Zeiger E (1993) Sugar and organic acid accumulation in guard cells of Vicia faba in response to red and blue light. Plant Physiol 102:1163–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Takamura T, Watanabe H, Endo M, Yanagi T, Okamoto K (1998) In vitro growth of Cymbidium plantlets cultured under super bright red and blue light-emitting diodes (LEDs). J Hortic Sci Biotech 73:39–44

    Article  Google Scholar 

  • Tay SAB, Macleod JK, Paalni LMS (1986) On the reported occurrence of cis-zeatin riboside as a free cytokinin in tobacco shoots. Plant Sci 43:131–134

    Article  CAS  Google Scholar 

  • Topchiy NM, Sytnik SK, Syvash OO, Zolotareva OK (2005) The effect of additional red irradiation on the photosynthetic apparatus of Pisum sativum. Photosynthetica 43:451–456

    Article  CAS  Google Scholar 

  • Verma AK, Upadhyay SK, Verma PC, Solomon S, Singh SB (2011) Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane (Saccharum) cultivars. Plant Biol 13:325–332

    Article  CAS  PubMed  Google Scholar 

  • Volmaro C, Pontín M, Luna V, Baraldi R, Bottini R (1998) Blue light control of hypocotyl elongation in etiolated seedlings of Lactuca sativa (L.) cv. Grand Rapids related to exogenous growth regulators and endogenous IAA, GA3 and abscisic acid. Plant Growth Regul 26:165–173

    Article  CAS  Google Scholar 

  • Wallen DG, Geen GH (1971) Light quality in relation to growth, photosynthetic rates and carbon metabolism in two species of marine plankton algae. Mar Biol 10:34–43

    Article  CAS  Google Scholar 

  • Wang G, Chen Y, Fan H, Huang P (2021) Effects of Light-Emitting Diode (LED) Red and Blue Light on the Growth and Photosynthetic Characteristics of Momordica charantia L. J Agric Chem Environ 10(1):1–15

    Google Scholar 

  • Wang H, Gu M, Cui J, Shi K, Zhou Y, Yu J (2009) Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J Photoch Photobio B 96:30–37

    Article  CAS  Google Scholar 

  • Wang J, Lu W, Tong Y, Yang Q (2016) Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front Plant Sci 7: 250

  • Wang XY, Xu XM, Cui J (2015) The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica 53:213–222

    Article  CAS  Google Scholar 

  • Weller JL, Fraser PD, Bramley PM, Giuliano G (2005) Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development, flowering time, and fruit antioxidant content. Plant Physiol 137:199–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu F, Cao S, Shi L, Chen W, Su X, Yang Z (2014a) Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. J Agric Food Chem 62:4778–4783

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Shi L, Chen W, Cao S, Su X, Yang Z (2014b) Effect of blue light treatment on fruit quality, antioxidant enzymes and radical-scavenging activity in strawberry fruit. Sci Hortic 175:181–186

    Article  CAS  Google Scholar 

  • Xu LF, Ma FW, Dong L (2009) Plant regeneration from in vitro cultured leaves of Lanzhou lily (Lilium davidii var. unicolor). Sci Hortic 119:458–461

    Article  CAS  Google Scholar 

  • Yan X, Cao QZ, He HB, Wang LJ, Jia GX (2021) Functional analysis and expression patterns of members of the FLOWERING LOCUS T (FT) gene family in Lilium. Plant Physiol Bioch 163:250–260

    Article  CAS  Google Scholar 

  • Zhao J, Thi LT, Park YG, Jeong BR (2020) light quality affects growth and physiology of carpesium triste maxim. Cult Vitro Agric 10(7):1–19

    CAS  Google Scholar 

  • Zheng X, Tian S (2006) Effect of oxalic acid on control of postharvest browning oflitchi fruit. Food Chem 96:519–523

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Liwen Bianji (Edanz) (www.liwenbianji.cn) for editing the English text of a draft of this manuscript.

Funding

This project was funded by Henan Industry-University Research Project (No. 162107000068) and National Scientific and Technological Achievements Transformation Project (No. 2012D0001018).

Author information

Authors and Affiliations

Authors

Contributions

WS and YS performed the experiments, analyzed data, and wrote the manuscript. CZ, XL, LS and YS carried out most of the experiments. ZW and SH started the experiments and revised the manuscript.

Corresponding authors

Correspondence to Zheng Wang or Songlin He.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Communicated by Myung-Min Oh.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, W., Song, Y., Zhang, C. et al. Effects of light quality on growth, photosynthetic characteristics, and endogenous hormones in in vitro-cultured Lilium plantlets. Hortic. Environ. Biotechnol. 64, 65–81 (2023). https://doi.org/10.1007/s13580-022-00468-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-022-00468-w

Keywords

Navigation