Skip to main content
Log in

Chromosomal characterization based on repetitive DNA distribution in a tetraploid cytotype of Chrysanthemum zawadskii

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to gain insight into the basic genetics of Chrysanthemum zawadskii Herbich ssp. lucidum (NAK.) Y. Lee, a Chrysanthemum subspecies from Ulleung Island, South Korea, by investigating its karyotypic and cytogenetic characteristics, and to contribute to the karyosystematic study of the genus Chrysanthemum (tribe: Anthemideae). Fluorescence in situ hybridization (FISH) was used to characterize the ploidy level, chromosome constitution, and distribution of 5S and 18S ribosomal DNA (rDNA) and Arabidopsis-type telomere repeats (TTTAGGG)n in C. zawadskii ssp. lucidum chromosomes. The somatic metaphase chromosome number of C. zawadskii ssp. lucidum was tetraploid (2n = 4x = 36). Signals from four 5S rDNA loci were detected in the middle of the long arms of some chromosomes, whereas signals from eight 18S rDNA loci were located at the termini of the short arms. The two rDNA markers localized to different chromosomes with no co-localization. The Arabidopsis-type telomeric repeats, however, co-localized with 18S rDNA sites at the ends of both chromosomal arms. This co-localization of telomeric sequences and 18S rDNA has also been observed in other Chrysanthemum species with various levels of ploidy, indicating that it is a general feature of the genus. DAPI (4′,6-diamidino-2-phenylindole) bands incidentally detected after FISH are also illustrated. These preliminary data contribute towards understanding the karyotypic trends and role of polyploidy in the evolution of the genus Chrysanthemum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abd El-Twab MH, Kondo K (2002) Physical mapping 5S rDNA of chromosomes of Dendranthema by fluorescence in situ hybridization. Chromosome Sci 6:13–16

    Google Scholar 

  • Abd El-Twab MH, Kondo K (2006) FISH physical mapping of 5S, 45S and Arabidopsis-type telomere sequence repeats in Chrysanthemum zawadskii showing intra-chromosomal variation and complexity in nature. Chromosome Bot 1:1–5

    Article  Google Scholar 

  • Abd El-Twab MH, Kondo K (2012) Physical mapping of 5S and 45S rDNA in Chrysanthemum and related genera of the Anthemideae by FISH, and species relationships. J Genet 91:1–5

    Article  Google Scholar 

  • Adams SP, Leitch IJ, Bennett MD, Chase MW, Leitch AR (2000) Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae). Am J Bot 87:1578–1583

    Article  CAS  PubMed  Google Scholar 

  • Agrawal R, Tsujimoto H, Tandon R, Rao SR, Raina SN (2013) Species-genomic relationships among the tribasic diploid and polyploid Carthamus taxa based on physical mapping of active and inactive 18S-5.8S-26S and 5S ribosomal RNA gene families, and the two tandemly repeated DNA sequences. Gene 521:136–144

    Article  CAS  PubMed  Google Scholar 

  • Ali HB, El-Khodary SE, El-Ashry ZM, Osman SA (2009) rDNA loci and DAPI bands reflect the phylogenetic distance between Vicia species. Cytologia 74:467–472

    Article  Google Scholar 

  • Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF (2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1:2320–2325

    Article  CAS  PubMed  Google Scholar 

  • Baliyan D, Sirohi A, Kumar M, Kumar V, Malika S, Sharma S, Sharma S (2014) Comparative genetic diversity analysis in Chrysanthemum: A pilot study based on morpho-agronomic traits and ISSR markers. Sci Hortic 167:164–168

    Article  CAS  Google Scholar 

  • Barros e Silva AE, Guerra M (2010) The meaning of DAPI bands observed after C-banding and FISH procedures. Biotech Histochem 85:115–125

    Article  CAS  PubMed  Google Scholar 

  • Bogunic F, Muratovic E, Siljak-Yakovlev S (2006) Chromosomal differentiation between Pinus heldreeichii and Pinus nigra. Ann For Sci 63:267–274

    Article  Google Scholar 

  • Bogunic F, Siljak-Yakovlev S, Muratovic E, Ballian D (2011) Different karyotype patterns among allopatric Pinus nigra (Pinaceae) population revealed by molecular cytogenetics. Plant Biol 13:194–200

    Article  CAS  PubMed  Google Scholar 

  • Chen FD, Chen PD, Fang WM, Li HJ (1998) Cytogenetics of F1-hybrids between two small-headed cultivars of Dendranthema × grandiflorum and two wild Dendranthema species. Acta Hortic Sin 25:308–309

    Google Scholar 

  • Cuyacot AR, Won SY, Park SK, Sohn SH, Lee J, Kim JS, Kim HH, Lim KB, Hwang YJ (2016) The chromosomal distribution of repetitive DNA sequences in Chrysanthemum boreale revealed a characterization in its genome. Sci Hortic 198:438–444

    Article  CAS  Google Scholar 

  • Dai SL, Chen JY, Li WB (1998) Application of RAPD analysis in the study on the origin of Chinese cultivated Chrysanthemum. Acta Bot Sin 40:1053–1059

    Google Scholar 

  • Dubcovsky J, Dvorak J (1995) Ribosomal RNA multigene loci: Nomads of the Triticeae genomes. Genetics 140:1367–1377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fregonezi JN, Torezan JMD, Vanzela ALL (2004) A karyotypic study of three southern Brazilian Asteraceae species using fluorescence in situ hybridization with a 45S rDNA probe and C-CMA3 banding. Genet Mol Biol 27:223–227

    Article  CAS  Google Scholar 

  • Gan Y, Liu F, Chen D, Wu Q, Qin Q, Wang C, Li S, Zhang X, Wang Y, Wang K (2013) Chromosomal locations of 5S and 45S rDNA in Gossypium genus and its phylogenetic implications revealed by FISH. PLoS ONE 8(6):e68207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heslop-Harrison JS (2000) Comparative genome organization in plants: from sequences and markers to chromatin and chromosomes. Plant Cell 12:617–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honda Y, Abd El-Twab MH, Ogura H, Kondo K, Tanaka R, Shidahara T (1997) Counting sat-chromosome numbers and species characterization in wild species of Chrysanthemum sensu lato by fluorescent in situ hybridization using pTa71 probe. Chromosome Sci 1:77–81

    Google Scholar 

  • Hwang YJ, Younis A, Ryu KB, Lim KB, Eun CH, Lee J, Sohn SH, Kwon SJ (2013) Karyomorphological analysis of wild Chrysanthemum boreale collected from four natural habitats in Korea. Flower Res J 21:182–189

    Article  Google Scholar 

  • Kim DC, Choi HG, Pak HS, Lee YH, Won M, Jung YK, Lee JS (2015) Breeding of garden Chrysanthemum cultivar ‘Nuri Ball’ (Dendranthema grandiflorum Ramat.) with white color petals and semi-decorative type characteristics. Korean J Hortic Sci Technol 33:789–795

    Article  CAS  Google Scholar 

  • Kim JS, Pak JH, Seo BB, Tobe H (2003) Karyotypes of metaphase chromosomes in diploid populations of Dendranthema zawadskii and related species (Asteraceae) from Korea: diversity and evolutionary implications. J Plant Res 116:47–55

    PubMed  Google Scholar 

  • Koo DH, Hur Y, Jin DC, Bang JW (2002) Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L: cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Mol Cells 13:413–418

    CAS  PubMed  Google Scholar 

  • Krinski D, Fernandes A, Rocha MP (2012) Cytogenetic analysis: A new era of procedures and precision, recent trends in cytogenetic studies -methodologies and applications, Prof. Padma Tirunilai (Ed.), ISBN: 978-953-51-0178-9, InTech, Available from: http://cdn. intechopen.com/pdfs-wm/30742.pdf.

    Google Scholar 

  • Ksiazczyk T, Taciak M, Zwierzykowski Z (2010) Variability of ribosomal DNA sites in Festuca pratensis, Lolium perenne, and their intergeneric hybrids, revealed by FISH and GISH. J Appl Genet 51:449–460

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan PS, Laere KV, Eeckhaut T, Huylenbroeck JV, Bockstaele EV, Khrustaleva L (2015) Karyotype analysis and visualization of 45S rRNA genes using fluorescence in situ hybridization in aroids (Araceae). Comp Cytogenet 9:145–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Lan T, Victor AA (2011) Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady’s slipper orchid. BMC Plant Biol 11:126

    Article  PubMed  PubMed Central  Google Scholar 

  • Lavania UC, Kushwaha JS, Lavania S, Basu S (2010) Chromosomal localization of rDNA and DAPI bands in solanaceous medicinal plant Hyoscyamus niger L. J Genet 89:493–496

    Article  PubMed  Google Scholar 

  • Levan A, Fredga K, Sunderge AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Li C, Chen S, Chen F, Li J, Fang W (2011) Cytogenetic study of three edible Chrysanthemum cultivars. Russian J Genet 47:176–181

    Article  CAS  Google Scholar 

  • Li J, He S, Zhang L, Hu Y, Yang F, Ma L, Huang J, Li L (2012) Telomere and 45S rDNA sequences are structurally linked on the chromosomes in Chrysanthemum segetum L. Protoplasma 249:207–215

    Article  CAS  PubMed  Google Scholar 

  • Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ, Kim JA, Choi BS, Lim MH, Jin M, Kim HI, de Jong H, Bancroft I, Lim YP, Park BS (2007) Characterization of the centromere and pericentromere retrotransposons in Brassica rapa and their distribution in related Brassica species. Plant J 49:173–183

    Article  CAS  PubMed  Google Scholar 

  • Liu PL, Wan Q, Guo YP, Yang J, Rao GY (2012) Phylogeny of the genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences. PLoS ONE 7:e48970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez J, Vargas P, Modesto Luceño M, Cuadrado A (2010) Evolution of Iris subgenus Xiphium based on chromosome numbers, FISH of nrDNA (5S, 45S) and trnL–trnF sequence analysis. Plant Syst Evol 289:223–235

    Article  Google Scholar 

  • Matoba H, Mizutani T, Nagano K, Hoshi Y Uchiyama H (2007) Chromosomal study of lettuce and its allied species (Lactuca spp., Asteraceae) by means of karyotype analysis and fluorescence in situ hybridization. Hereditas 144:235–243

    Article  PubMed  Google Scholar 

  • Muratovic E, Robin O, Bogunic F, Soljan D, Siljak-Yakovlev S (2010) Speciation of European lilies from Liriotypus section based on karyotype evolution. Taxon 59:165–175

    Google Scholar 

  • Nag A, Rajkumar S (2011) Chromosome identification and karyotype analysis of Podophyllum hexandrum Rox b. ex Kunth using FISH. Physiol Mol Biol Plants 17:313–316

    Article  PubMed  Google Scholar 

  • Palai SK, Rout GR (2011) Characterization of new variety of Chrysanthemum by using ISSR markers. Hortic Bras 29:613–617

    Article  Google Scholar 

  • Perez de Castro AM, Vilanova S, Canizares J, Pascual L, Blanca JM, Diez MJ, Prohens J, Pico B (2012) Application of genomic tools in plant breeding. Curr Genomics 13:179–195

    Article  Google Scholar 

  • Raina SN, Mukai Y (1999) Detection of a variable number of 18S-5.8S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome 42:52–59

    Article  CAS  Google Scholar 

  • Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: Structural and evolutionary implications. BMC Evol Biol 12:225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rout GA, Mohapatra A, Mohan Jain S (2006) Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnol Adv 24:531–560

    Article  CAS  PubMed  Google Scholar 

  • Salles-de-Melo MRC, de Lucena RM, Semir J, de Carvalho R, de Cassia Arauja Pereira R, Benko-Iseppon AM (2010) Karyological features and cytotaxonomy of the tribe Vernonieae (Asteraceae). Plant Syst Evol 285:189–199

    Article  Google Scholar 

  • Sharma SK, Mehra P, Kumari J, Kumar S, Kumaria S, Tandon P, Rao SR (2012) Physical localization and probable transcriptional activity of 18S–5.8S–26S rRNA gene loci in some Asiatic Cymbidiums (Orchidaceae) from north–east India. Gene 499:362–366

    Article  CAS  PubMed  Google Scholar 

  • She CW, Jiang XH. (2015) Karyotype analysis of Lablab purpureus (L.) Sweet using fluorochrome banding and fluorescence in situ hybridisation with rDNA probes. Czech J Genet Plant Breed 51:110–116

    Article  Google Scholar 

  • Souissi AK, Yakovlev SS, Pustahija F, Chaieb M (2012) Physical mapping of 5S and 18S-5.8S-26S RNA gene families in polyploid series of Cenchrus ciliaris Linnaeus, 1771 (Poaceae). Comp Cytogenet 6:273–286

    Article  Google Scholar 

  • Tagashira N, Hoshi Y, Yagi K, Plader W, Malepszy S (2009) Cytogenetic comparison among three cultivars of cucumber (Cucumis sativus L.) by using post-heated DAPI band, 45S and 5S rDNA sites. Chromosome Bot 4:19–23

    Article  Google Scholar 

  • Xu YF, Chen FD, Chen SM, Teng NJ, Li, FT (2009) Seed set of inbred, meiosis and pollen capacity of 5 Chrysanthemum cultivars. Acta Bot Bore -Occi Sin 29:469–474

    Google Scholar 

  • Young HA, Sarath G, Tobias CM (2012) Karyotype variation is indicative of subgenomic and ecotypic differentiation in switchgrass. BMC Plant Biol 12:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Chen S, Chen F, Fang W, Li F (2010) A preliminary genetic linkage map of Chrysanthemum (Chrysanthemum morifolium) cultivars using RAPD, ISSR and AFLP markers. Sci Hortic 125:422–428

    Article  CAS  Google Scholar 

  • Zhang Y, Zhu ML, Dai SL (2013) Analysis of karyotype diversity of 40 Chinese Chrysanthemum cultivars. J Syst Evol 51:335–352

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-Jung Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuyacot, A.R., Lim, KB., Kim, H.H. et al. Chromosomal characterization based on repetitive DNA distribution in a tetraploid cytotype of Chrysanthemum zawadskii . Hortic. Environ. Biotechnol. 58, 488–494 (2017). https://doi.org/10.1007/s13580-017-0280-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-017-0280-4

Additional key words

Navigation