Skip to main content

Advertisement

Log in

Transcriptome profile analysis of cadmium tolerance in Chinese flowering cabbage

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Chinese flowering cabbage (Brassica parachinensis L.) is an important leafy vegetable crop that can accumulate high levels of cadmium (Cd) and can thus be easily contaminated by this heavy metal. In this study, we performed genome-wide transcriptional profiling of Cd tolerance in Cd-tolerant cultivar ‘LB70’ using Solexa sequencing to identify genes and pathways involved in Cd tolerance in Chinese flowering cabbage. Profiling analysis revealed numerous changes in gene expression in response to Cd treatment, including 1669 genes that were downregulated and 1404 genes that were upregulated. Gene ontology analysis showed that these differentially expressed genes were mainly involved in binding, catalytic processes, metabolism, cellular processes, single-organism processes, biological regulation, localization, and stimulus responses. Several known important Cd tolerance-related genes, such as HMA3, HMA4, and Nramp1, were also identified. Pathway analysis suggested that two potential novel pathways, namely, the viral carcinogenesis and Parkinson’s disease pathways, might be involved in Cd tolerance in Chinese flowering cabbage. The genes and pathways identified in this study provide an important basis for future studies on the molecular mechanism of Cd tolerance in Chinese flowering cabbage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Chen J, Yang L, Gu J, Bai X, Ren Y, Fan T, Han Y, Jiang L, Xiao F, et al (2014) MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana. New Phytol 205: 570–582

    Article  PubMed  Google Scholar 

  • Chen Y, Liu Y, Ding Y, Wang X, Xu J (2015) Overexpression of PtPCS enhances cadmium tolerance and cadmium accumulation in tobacco. Plant Cell Tissue Organ Cult 121: 389–396

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88: 1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO 18: 3325–3333

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins, roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53: 159–182

    Article  CAS  PubMed  Google Scholar 

  • Colangelo EP, Guerinot ML (2004) The essential basic helix-loophelix protein FIT1 is required for the iron deficiency response. Plant Cell 16: 3400–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa G, Michaut JC, Guckert A (1997) Amino acids exuded from axenic roots oflettuce and white lupin seedlings exposed to different cadmium concentrations. J Plant Nutr 20: 883–900

    Article  CAS  Google Scholar 

  • Cruz-Ramírez A, Díaz-Triviño S, Wachsman G, Du Y, Arteága-Vázquez M, Zhang H, Benjamins R, Blilou I, Neef AB, et al (2013) A SCARECROW-RETINOBLASTOMA protein network controls protective quiescence in the Arabidopsis root stem cell organizer. PLoS Biol 11: e1001724

    Article  Google Scholar 

  • Curie C, Alonso JM, Le JM, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347: 749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Ravindran NA, Munters E, et al (2010) Cadmium stress, an oxidative challenge. Biometals 23: 927–940

    Article  CAS  PubMed  Google Scholar 

  • Dal Corso G, Farinati S, Furin A (2010) Regulatory networks of cadmium stress in plants. Plant Signaling Behav 5: 663–667

    Article  Google Scholar 

  • Delhaize E, Jackson PJ, Lujan LD, Robinson NJ (1989) Poly (?-glutamylcysteinyl) glycine synthesis in Datura innoxia and binding with cadmium. Plant Physiol 89: 700–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eliyahu E, Rog I, Inbal D, Danon A (2015) ACHT4-driven oxidation of APS1 attenuates starch synthesis under low light intensity in Arabidopsis plants. Proc Natl Acad Sci USA 112: 12876–12881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eubel H, Jänsch L, Braun HP (2003) New Insights into the Respiratory Chain of Plant Mitochondria. Supercomplexes and a Unique Composition of Complex II. Plant Physiol 133: 74–286

    Google Scholar 

  • Farinati S, Dal Corso G, Varotto S, Furini A (2010) The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants. New Phytol 185: 964–978

    Article  CAS  PubMed  Google Scholar 

  • Grant CA, Clarke JM, Duguid S, Chaney RL (2008) Selection and breeding of plant cultivars to minimize cadmium accumulation. Sci 390: 301–310

    CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453: 391–395

    Article  CAS  PubMed  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, et al (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88: 1751–1765

    Article  CAS  PubMed  Google Scholar 

  • Hirano H, Harashima H, Shinmyo A, Sekine M (2008) Arabidopsis RETINOBLASTOMA-RELATED PROTEIN 1 is involved in G1 phase cell cycle arrest caused by sucrose starvation. Plant Mol Biol 66: 259–275

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa S, Suzui N, Ito-Tanabata S, Ishii S, Igura M, Abe T, Kuramata M, Kawachi N, Fujimaki S (2011) Real-time imaging and analysis of differences in cadmium dynamics in rice cultivars (Oryza sativa) using positron-emitting 107 Cd tracer. BMC Plant Biol 11: 172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa NK, et al (2012) Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice. Proc Natl Acad Sci USA 109: 19166–19171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y (2006) AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140: 922–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg V (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed  PubMed Central  Google Scholar 

  • Leita L, De Nobili M, Cesco S, Mondini C (1996) Analysis of intercellular cadmium forms in roots and leaves of bush bean. J Plant Nutr 19: 527–533

    Article  CAS  Google Scholar 

  • Lin CY, Trinh NN, Fu SF, Hsiung YC, Chia LC, Lin CW, Huang HJ (2013) Comparison of early transcriptome responses to copper and cadmium in rice roots. Plant Mol Biol 81: 507–522

    Article  CAS  PubMed  Google Scholar 

  • Lin YF, Aaers M (2012) The molecular mechanism of zinc and cadmium stress response in plants. Cell Mol Life Sci 69: 3187–3206

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Zhu S, Tang Q, Tang S (2015) Genome-wide transcriptomic profiling of ramie (Boehmeria nivea L.Gaud) in response to cadmium stress. Gene 558: 131–137

    Article  CAS  PubMed  Google Scholar 

  • Lozano-Rodrigez E, Hernandez LE, Bonay P, Carpena-Ruiz RO (1997) Distribution of Cd in shoot and root tissues of maize and pea plants, physiological disturbances. J Exp Bot 306: 123–128

    Article  Google Scholar 

  • Mao XZ, Cai T, Olyarchuk JG, Wei LP (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21: 3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Mills RF, Francini A, Ferreira da Rocha PSC, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P-1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579: 783–791

    Article  CAS  PubMed  Google Scholar 

  • Mills RF, Krijger GC, Baccarini PJ, Hall JL, Williams LE (2003). Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35: 164–176

    Article  CAS  PubMed  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149: 894–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5: 621–628

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Peng H, He X, Gao J, Ma H, Zhang Z, Shen Y, Pan G, Lin H (2015) Transcriptomic changes during maize roots development responsive to Cadmium (Cd) pollution using comparative RNAseq-based Approach. Biochem 464: 1040–1047

    CAS  Google Scholar 

  • Perilli S, Perez-Perez JM, Mambro DR, Peris CL, Díaz-Triviño S, Bianco DM, Pierdonati E, Moubayidin L, Cruz-Ramírez A, et al (2013) RETINOBLASTOMA-RELATED Protein Stimulates Cell Differentiation in the Arabidopsis Root Meristem by Interacting with Cytokinin Signaling. Plant Cell 25: 4469–4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picault N, Hodges M, Palmieri L, Palmieri F (2004) The growing family of mitochondrial carriers in Arabidopsis. Trends Plant Sci 9: 138–146

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56: 15–39

    Article  CAS  PubMed  Google Scholar 

  • Qiu Q, Wang Y, Yang Z, Yuan J (2011) Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food Chem Toxicol 49: 2260–2267

    Article  CAS  PubMed  Google Scholar 

  • Rodecap KD, Tingey DT, Tibbs JH (1981) Cadmium-induced ethylene production in bean-plants. Zeitschrift Für Pflanzenphysiologie 105: 65–74

    Article  CAS  Google Scholar 

  • Ruegsegger A, Brunold C (1992) Effect of cadmium on ?-glutamylcysteine synthesis in maize seedlings. Plant Physiol 99: 428–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, et al (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6: 2180–2198

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Rensing C, Rosen BP, Mitra B (2000) The ATP hydrolytic activity of purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. J Biol Chem 275: 3873–3878

    Article  CAS  PubMed  Google Scholar 

  • Shim D, Hwang JU, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y (2009) Orthologues of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 214: 4031–4043

    Article  Google Scholar 

  • Smeets K, Ruytinx J, Semane B, Belleghem FV, Remans T, Sanden SV, Vangronsveld J, Cuypers A (2008) Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot 63: 1–8

    Article  CAS  Google Scholar 

  • Stone SL, Hauksdóttir H, Troy A, Herschleb J, Kraft E, Callis Judy (2005) Functional analysis of the RING-Type ubiquitin ligasen family of Arabidopsis. Plant Physiol 137: 13–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa NK (2011) The OsNRAMP1 iron transporter is involved in Cd accumulation in rice. J Exp Bot 62: 4843–4850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV), high-performance genomics data visualization and exploration. Brief Bioinform 14: 178–192

    Article  PubMed  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat, discovering splice junctions with RNA-seq. Bioinformatics 25: 1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576: 306–312

    Article  CAS  PubMed  Google Scholar 

  • Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, Richaud P (2005) Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch. FEBS Lett 579: 1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Barberon M, Zelazny E, Seguela M, Briat JF, Curie C (2009) Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229: 1171–1179

    Article  CAS  PubMed  Google Scholar 

  • Wang JL, Fang W, Yang ZY, Yuan J, Zhu Y, Yu H (2007) Interand Intraspecific Variations of Cadmium Accumulation of 13 Leafy Vegetable Species in a Greenhouse Experiment. J Agric Food Chem 55: 9118–9123

    Article  CAS  PubMed  Google Scholar 

  • Wang HY, Klatte M, Jakoby M, Baumlein H, Weisshaar B, Bauer P (2007) Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta 226: 897–908

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq, an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26: 136–138

    Article  PubMed  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd 2+ -hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29: 950–963

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Chen C, Du J, Liu HF, Cui Y, Zhang Y, He YJ, Wang YQ, Chu CC, et al (2012) Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158: 790–800

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Chu L, Jin Q, Wang Y, Chen X, Zhao H, Xue Z (2015) Transcriptome-Wide Identification of miRNAs and Their Targets from Typha angustifolia by RNA-Seq and Their Response to Cadmium Stress. PLoS ONE 10: 1–22

    Google Scholar 

  • Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J, Wang D, Ling HQ (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18: 385–397

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15: 2647–2653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu QH, Huang DY, Liu SL, Luo ZC, Rao ZX, Cao XL, Ren XF (2013) Accumulation and subcellular distribution of cadmium in ramie (Boehmeria nivea L. Gaud.) planted on elevated soil cadmium contents. Plant Soil Environ 59: 57–61

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Li, H., Zou, D. et al. Transcriptome profile analysis of cadmium tolerance in Chinese flowering cabbage. Hortic. Environ. Biotechnol. 58, 56–65 (2017). https://doi.org/10.1007/s13580-017-0075-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-017-0075-7

Additional key words

Navigation