Skip to main content
Log in

Comparative Transcriptome Profiling Under Cadmium Stress Reveals the Uptake and Tolerance Mechanism in Brassica juncea

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a biologically non-essential and phytotoxic heavy metal pollutant. In this study, we estimated the Cd accumulation potential of Indian mustard and identified factors responsible for Cd uptake, tolerance, and detoxification. Eight transcriptomic libraries were sequenced and ≈ 230 million good quality reads were generated. The alignment rate against B. juncea reference genome V1.5 varied in the range of 85.03–90.06%. Comparative expression analysis using DESeq2 revealed 11,294 genes to be significantly differentially expressed under Cd treatment. The agriGO singular enrichment analysis revealed genes related to response to chemical, oxidative stress, transport, and secondary metabolic process were upregulated, whereas multicellular organismal development, developmental process, and photosynthesis were downregulated by Cd treatment. Furthermore, 616 membrane transport proteins were found to be significantly differentially expressed. Cd-related transporters such as metal transporter (Nramp1), metal tolerance protein (MTPC2, MTP11), cadmium-transporting ATPase, and plant cadmium resistance protein (PCR2, PCR6) were upregulated whereas cadmium/zinc-transporting ATPase (HMA2, HMA3, HMA4), high-affinity calcium antiporter (CAX1), and iron transport protein (IRT1) were downregulated by Cd treatment. A total of 332 different gene-networks affected by Cd stress were identified using KAAS analysis. Various plant hormones signaling cascades were modulated suggesting their role in Cd stress tolerance. The regulation overview using MapMan analysis also revealed gene expression related to plant hormones, calcium regulation, and MAP kinases were altered under Cd stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw sequence data of the libraries are available from the NCBI SRA under the study with Accession Nos.: SRP152398 and SRP126203.

References

  • Abozeid A, Ying Z, Lin Y, Liu J, Zhang Z, Tang Z (2017) Ethylene improves root system development under cadmium stress by modulating superoxide anion concentration in Arabidopsis thaliana. Front Plant Sci 8:253

    PubMed  PubMed Central  Google Scholar 

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    CAS  PubMed  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard Brassica juncea (L.) Czern. & Coss. plants can be alleviated by salicylic acid South African. J Bot 77:36–44

    CAS  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    CAS  PubMed  Google Scholar 

  • Andresen E, Küpper H (2013) Cadmium toxicity in plants. In: Cadmium: from toxicity to essentiality. Springer, New York, pp 395–413

    Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham Institute, Cambridge

    Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai B-D, Yin J, Hao Y-H, Li Y-N, Yuan B-F, Feng Y-Q (2015) Profiling of phytohormones in rice under elevated cadmium concentration levels by magnetic solid-phase extraction coupled with liquid chromatography tandem mass spectrometry. J Chromatogr A 1406:78–86

    CAS  PubMed  Google Scholar 

  • Choudhury S, Kumar S (2004) Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. Bulg J Plant Physiol 30:95–110

    CAS  Google Scholar 

  • Cobbett CS, Hussain D, Haydon MJ (2003) Structural and functional relationships between type 1B heavy metal-transporting P-type ATPases Arabidopsis. New Phytol 159:315–321

    CAS  Google Scholar 

  • Conesa A et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    PubMed  PubMed Central  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Biol Plant 29:207–212

    Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Plant hormones. Springer, New York, pp 1–15

    Google Scholar 

  • DiDonato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine–metal complexes. Plant J 39:403–414

    CAS  PubMed  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X et al (2017) Genome-wide identification of sweet orange (Citrus sinensis) metal tolerance proteins and analysis of their expression patterns under zinc, manganese, copper, and cadmium toxicity. Gene 629:1–8

    CAS  PubMed  Google Scholar 

  • Gacche RN, Jadhav SG (2012) Antioxidant activities and cytotoxicity of selected coumarin derivatives: preliminary results of a structure–activity relationship study using computational tools. J Exp Clin Med 4:165–169

    CAS  Google Scholar 

  • Goswami S, Das S (2015) A study on cadmium phytoremediation potential of Indian mustard, Brassica juncea. Int J Phytorem 17:583–588

    CAS  Google Scholar 

  • Guerinot M (2000) The ZIP family of metal transporters. Biochimica et biophysica acta 1465:190

    CAS  PubMed  Google Scholar 

  • Guo B, Liang Y, Zhu Y, Zhao F (2007) Role of salicylic acid in alleviating oxidative damage in rice roots (Oryza sativa) subjected to cadmium stress. Environ Pollut 147:743–749

    CAS  PubMed  Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41

    CAS  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation increased manganese tolerance. Plant Physiol 124:125–134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu Y, Kao C (2003) Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26:867–874

    CAS  PubMed  Google Scholar 

  • Hsu YT, Kao CH (2005) Abscisic acid accumulation and cadmium tolerance in rice seedlings. Physiol Plant 124:71–80

    CAS  Google Scholar 

  • Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang T-L, Nguyen QTT, Fu S-F, Lin C-Y, Chen Y-C, Huang H-J (2012) Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Mol Biol 80:587–608

    CAS  PubMed  Google Scholar 

  • Hussain D et al (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jarup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    PubMed  Google Scholar 

  • Jonak C, Ökrész L, Bögre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424

    CAS  PubMed  Google Scholar 

  • Kendrick MD, Chang C (2008) Ethylene signaling: new levels of complexity and regulation. Curr Opin Plant Biol 11:479–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koren’kov V et al (2007) Enhanced Cd2+-selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta 225:403–411

    PubMed  Google Scholar 

  • Kostova I, Bhatia S, Grigorov P, Balkansky S, Parmar S, Prasad VK, Saso A L (2011) Coumarins as antioxidants. Curr Med Chem 18:3929–3951

    CAS  PubMed  Google Scholar 

  • Laspina N, Groppa M, Tomaro M, Benavides M (2005) Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci 2:323–330

    Google Scholar 

  • Lin Y, Aarts M (2012) The molecular mechanism of zinc and cadmium stress response in plants Cellular and molecular life sciences. CMLS 69:3187–3206

    CAS  PubMed  Google Scholar 

  • Liu X-M et al (2010) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive. oxygen species. Phytochemistry 71:614–618

    CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    PubMed  PubMed Central  Google Scholar 

  • Maksymiec W, Wojcik M, Krupa Z (2007) Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere 66:421–427

    CAS  PubMed  Google Scholar 

  • Minglin L, Yuxiu Z, Tuanyao C (2005) Identification of genes up-regulated in response to Cd exposure in Brassica juncea. L. Gene 363:151–158

    PubMed  Google Scholar 

  • Miyadate H et al (2011) OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytol 189:190–199

    CAS  PubMed  Google Scholar 

  • Mobin M, Khan N (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    CAS  PubMed  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    PubMed  PubMed Central  Google Scholar 

  • Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212

    CAS  PubMed  Google Scholar 

  • Nelson N (1999) Metal ion transporters and homeostasis. EMBO J 18:4361–4371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni T-H, Wei Y-Z (2003) Subcellular distribution of cadmium in mining ecotype Sedum alfredii. Acta Botanica Sinica 45(8):925–928

    Google Scholar 

  • Nocito FF, Lancilli C, Dendena B, Lucchini G, Sacchi GA (2011) Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant Cell Environ 34:994–1008

    CAS  PubMed  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pietta P-G (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    CAS  PubMed  Google Scholar 

  • Price A, Taylor A, Ripley S, Griffiths A, Trewavas A, Knight M (1994) Oxidative signals in tobacco increase cytosolic calcium. Plant Cell (USA) 6:1301–1310

    CAS  Google Scholar 

  • Qadir S, Qureshi M, Javed S, Abdin M (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181

    CAS  Google Scholar 

  • Rady MM (2011) Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci Hortic 129:232–237

    CAS  Google Scholar 

  • Rahimzadeh MR, Rahimzadeh MR, Kazemi S, Moghadamnia A-a (2017) Cadmium toxicity and treatment: an update. Casp J Intern Med 8:135

    Google Scholar 

  • Rajewska I, Talarek M, Bajguz A (2016) Brassinosteroids and response of plants to heavy metals action. Front Plant Sci 7:629

    PubMed  PubMed Central  Google Scholar 

  • Rao X, Huang X, Zhou Z, Lin X (2013) An improvement of the 2ˆ (–delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat Bioinform Biomath 3:71

    Google Scholar 

  • Rentel MC et al (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858

    CAS  PubMed  Google Scholar 

  • Roberts DM, Harmon AC (1992) Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Ann Rev Plant Biol 43:375–414

    CAS  Google Scholar 

  • Sarwar N, Malhi SS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90:925–937

    CAS  PubMed  Google Scholar 

  • Schellingen K, Van Der Straeten D, Remans T, Vangronsveld J, Keunen E, Cuypers A (2015) Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana. Plant Sci 239:137–146

    CAS  PubMed  Google Scholar 

  • Singh S, Prasad SM (2015) IAA alleviates Cd toxicity on growth, photosynthesis and oxidative damages in eggplant seedlings. Plant Growth Regul 1:87–98

    Google Scholar 

  • Singh I, Shah K (2014) Evidences for structural basis of altered ascorbate peroxidase activity in cadmium-stressed rice plants exposed to jasmonate. Biometals 27:247–263

    CAS  PubMed  Google Scholar 

  • Song W-Y et al (2010) Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long-distance zinc transport. Plant Cell 22:2237–2252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Wang P, Zhou T, Rong J, Jia H, Liu Z (2017) Transcriptome analysis of the effects of shell removal and exogenous gibberellin on germination of Zanthoxylum seeds. Sci Rep (Nature Publisher Group) 7:1

    Google Scholar 

  • Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PloS one 6:e21800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Koizumi N, Sano H (2001) Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant Cell Environ 24:1177–1188

    CAS  Google Scholar 

  • Thimm O et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    CAS  PubMed  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    CAS  PubMed  Google Scholar 

  • Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71-W74

    PubMed Central  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat J-F, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veselov D, Kudoyarova G, Symonyan M, Veselov S (2003) Effect of cadmium on ion uptake, transpiration and cytokinin content in wheat seedlings. Bulg J Plant Physiol 29:353–359

    Google Scholar 

  • Wang CQ, Song H (2009) Calcium protects Trifolium repens L. seedlings against cadmium stress. Plant Cell Rep 28:1341–1349

    CAS  PubMed  Google Scholar 

  • Williams LE, Mills RF (2005) P1B-ATPases–an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    CAS  PubMed  Google Scholar 

  • Yan Z, Chen J, Li X (2013) Methyl jasmonate as modulator of Cd toxicity in Capsicum frutescens var. fasciculatum seedlings. Ecotoxicol Environ Saf 98:203–209

    CAS  PubMed  Google Scholar 

  • Yan H, Filardo F, Hu X, Zhao X, Fu D (2016) Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves. Environ Sci Pollut Res 23:3758–3769

    CAS  Google Scholar 

  • Yang T, Poovaiah B (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    CAS  PubMed  Google Scholar 

  • Yang J et al (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225

    CAS  PubMed  Google Scholar 

  • Yang H et al (2018a) Transcriptome assembly and expression profiling of the molecular responses to cadmium toxicity in cerebral ganglia of wolf spider Pardosa pseudoannulata (Araneae: Lycosidae). Ecotoxicology 27:198–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H et al (2018b) Metatranscriptome analysis of the intestinal microorganisms in Pardosa pseudoannulata in response to cadmium stress. Ecotoxicol Environ Saf 159:1–9

    CAS  PubMed  Google Scholar 

  • Yeh C-M, Chien P-S, Huang H-J (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots J Exp Bot 58: 659–671

    CAS  PubMed  Google Scholar 

  • Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34

    CAS  Google Scholar 

  • Zhand C-h, Wu Z-y, Ting J, Ying G (2013) Purification and identification of glutathione S-transferase in rice root under cadmium stress. Rice Sci 20:173–178

    Google Scholar 

  • Zhang C-H, Ying G (2008) Response of glutathione and glutathione S-transferase in rice seedlings exposed to cadmium stress. Rice Sci 15:73–76

    Google Scholar 

  • Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Council for Scientific and Industrial Research, India under Grant No. 38(1403)/15/EMR-II. ST and SC acknowledge the fellowship received from ICMR towards Ph.D.

Author information

Authors and Affiliations

Authors

Contributions

PB designed and conceived of the study. ST analyzed and interpreted data, drafted the manuscript. SC helped in the acquisition of data and data analysis. PB and SC coordinated further in improving the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Pankaj Bhardwaj.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 KB)

Supplementary material 2 (DOCX 14 KB)

Online Resource 3

: Details of BLASTx analysis against the transporter classification database. (XLSX 510 KB)

Details of Gene ontology (GO) analysis (XLSX 19 KB)

Online Resource 5

: KAAS summary and details of metabolic and regulatory pathways. (XLSX 22 KB)

Online Resource 6

: MAPK signaling pathway (The boxes in green represent transcripts with significant differential expression under Cd stress) (PNG 37 KB)

Online Resource 7

: Calcium signaling pathway (The boxes in green represent transcripts with significant differential expression under Cd stress) (PNG 27 KB)

Online Resource 8

: Glutathione metabolism pathway (The boxes in green represent transcripts with significant differential expression under Cd stress) (PNG 30 KB)

Online Resource 9

: Plant hormone signal transduction pathway (The boxes in green represent transcripts with significant differential expression under Cd stress) (PNG 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, S., Choudhary, S. & Bhardwaj, P. Comparative Transcriptome Profiling Under Cadmium Stress Reveals the Uptake and Tolerance Mechanism in Brassica juncea. J Plant Growth Regul 38, 1141–1152 (2019). https://doi.org/10.1007/s00344-019-09919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-019-09919-8

Keywords

Navigation