Skip to main content
Log in

Mineral composition of ‘Selva’ strawberry as affected by time of application of nitric oxide under saline conditions

  • Research Report
  • Cultivation Physiology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of present study was to evaluate the impact of time of application of nitric oxide (NO) on mineral composition of strawberry ‘Selva’ plants under saline conditions. Well-rooted daughter plants were planted in 3L plastic pots filled with 1:1 (v/v) ratio of peat moss and perlite and grown under the greenhouse conditions (21 ± 2/17 ± 2°C and RH = 60 ± 5% under natural sunlight). After full establishment of plants they were divided into 10 groups: control, plants sprayed with distilled water and exposed to 40 mM NaCl salinity stress, plants sprayed with 50 or 75 μM NO solutions under non-stress conditions, and plants sprayed with 50 or 75 μM NO solutions at three different application times, one week before, at the beginning, and one week after initiation of 40 mM NaCl salt stress. Results indicated that concentrations of macro-nutrients, Fe and Zn in shoots and roots were decreased due to salinity stress. The NO application, regardless of time of application and level, mitigated the deleterious effect of salinity on minerals uptake. Time aspect of NO application was important as plants received 75 μM NO solution, one week before initiation of salt stress had higher shoot N, K, and Ca concentration, productivity and leaf relative water content as compared with those received NO solution at the same concentration, one week after exposure to salt stress. Higher K/Na ratio of shoot was also observed in plants treated with 75 μM NO solution one week before start of salinity compared with salt-stressed, non-NO-treated plants. It seemed that time of NO application could change the strategy of plant against stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bai, X., L. Yang, M. Tian, J. Chen, J. Shi, Y. Yang, and X. Hu. 2011. Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS One. 6:207–214.

    Google Scholar 

  • Beligni, M.V., A. Fath, P.C. Bethke, L. Lamattina, and R.L. Jones. 2002. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol. 129:1642–1650.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, J., Q. Xiao, F. Wu, X. Dong, J. He, Z. Pei, and H. Zheng. 2010. Nitric oxide enhances salt secretion and Na+ sequestration in a mangrove plant, Avicennia marina, through increasing the expression of H+ -ATPase and Na+/H+ antiporter under high salinity. Tree Physiol. 30:1570–1585.

    Article  CAS  PubMed  Google Scholar 

  • Connolly, E., J.P. Fett, and M.L. Guerinot. 2002. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Correa-Aragunde, N., M. Graziano, and L. Lamattina. 2004. Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218:900–905.

    Article  CAS  PubMed  Google Scholar 

  • Grattan, S.R. and C.M. Grieve. 1999. Salinity-mineral nutrient relations in horticultural crops. Sci. Hortic. 78:127–158.

    Article  CAS  Google Scholar 

  • Graziano, M. and L. Lamattina. 2007. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J. 52:949–960.

    Article  CAS  PubMed  Google Scholar 

  • Graziano, M., M.V. Beligni, and L. Lamattina. 2002. Nitric oxide improves internal iron availability in plants. Plant Physiol. 130:1852–1859.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo, Y., Z. Tian, D. Yan, J. Zhang, and P. Qin. 2009. Effects of nitric oxide on salt stress tolerance in Kosteletzkya virginica. Life Sci. J. 6:67–75.

    CAS  Google Scholar 

  • Hassanuzaman, M., K. Nahar, and M. Fujita. 2013. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages, p. 25–87. In: P. Ahmad, P.P. Azooz, and M.N.V. Prasad (eds.). Ecophysiology and responses of plants under salt stress, Springer Verlag, Germany.

    Chapter  Google Scholar 

  • Hossain, K.K., R.D. Itoh, G. Yoshimura, G. Tokuda, H. Oku, M.F. Cohen, and H. Yamasaki. 2010. Effects of nitric oxide scavengers on thermoinhibition of seed germination in Arabidopsis thaliana. Russian J. Plant Physiol. 57:222–232.

    Article  CAS  Google Scholar 

  • Hu, Y.C. and U. Schmidhalter. 1997. Interactive effects of salinity and macronutrient level on wheat 2. Composition. J. Plant Nutr. 20:1169–1182.

    Article  CAS  Google Scholar 

  • Hu, Y.C. and U. Schmidhalter. 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci. 168:541–549.

    Article  CAS  Google Scholar 

  • Kalra, Y.P. 1998. Handbook of reference methods for plant analysis. CRC Press, USA.

    Google Scholar 

  • Karlidag, H., E. Yildirim, and M. Turan. 2009. Salicylic acid ameliorates the adverse effect of salt stress on strawberry. Sci. Agricola 66:180–187.

    Article  CAS  Google Scholar 

  • Kaya C., E. Akb, and D. Higgs. 2002. Response of salt-stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrate. J. Plant Nutr. 26:543–560.

    Article  Google Scholar 

  • Keutgen, A.J. and N. Keutgen. 2003. Influence of NaCl salinity stress on fruit quality in strawberry. Acta Hortic. 609:155–157.

    Google Scholar 

  • Khayat, M., E. Tafazoli, S. Eshghi, M. Rahemi, and S. Rajaee. 2007. Salinity, supplementary calcium and potassium effects on fruit yield and quality of strawberry (Fragaria ananassa Duch.). Am. Eur. J. Agric. Environ. Sci. 2:539–544.

    Google Scholar 

  • Longnecker, N. and R.M. Welch. 1990. Accumulation of apoplastic iron in plant roots: A factor in the resistance of soybeans to iron-deficiency induced chlorosis. Plant Physiol. 92:17–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pagnussat, G.C., M. Simontacchi, S. Puntarulo, and L. Lamattina. 2002. Nitric oxide is required for root organogenesis. Plant Physiol. 129:954–956.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramirez, L., E.J. Zabaleta, and L. Lamattina. 2010. Nitric oxide and frataxin: Two players contributing to maintain cellular iron homeostasis. Ann. Bot. 105:801–810.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Romero-Aranda, R., T. Soria, and S. Cuartero. 2001. Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci. 160:265–272.

    Article  CAS  PubMed  Google Scholar 

  • Rozeff, N. 1995. Sugarcane and salinity??A review paper. Sugarcane. 5:8–19.

    Google Scholar 

  • Ruan, H.H., W. Shen, and L. Xu. 2002. Nitric oxide modulates the activities of plasma membrane H+ -ATPase and PPase in wheat seedling roots and promotes the salt tolerance against salt stress. Acta Bot. Sinica 46:415–422.

    Google Scholar 

  • Saied, A.S., A.J. Keutgen, and G. Noga. 2005. The influence of NaCl salinity on growth, yield and fruit quality of strawberry cultivars ‘Elsanta’ and ‘Korona’. Sci. Hortic. 103:289–303.

    Article  CAS  Google Scholar 

  • Sheokand, S., V. Bhankar, and V. Sawhney. 2010. Ameliorative effect of exogenous nitric oxide on oxidative metabolism in NaCl treated chickpea plants. Brazi. J. Plant Physiol. 22:81–90.

    Google Scholar 

  • Shi, Q., F. Ding, X. Wang, and M. Wei. 2007. Exogenous nitric oxide protect cucumber roots against oxidative stress induced by salt stress. Plant Physiol. Biochem. 45:542–550.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, M.H., M.H. Al-Whaibi, and M.O. Basala. 2011. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447–455.

    Article  CAS  PubMed  Google Scholar 

  • Song, J., G. Shi, S. Xing, M. Chen, and B. Wang. 2009. Effects of nitric oxide and nitrogen on seedling emergence, ion accumulation, and seedling growth under salinity in the euhalophyte Suaeda salsa. J. Plant Nutr. Soil Sci. 172:544–549.

    Article  CAS  Google Scholar 

  • Suhayda, C.G., J.L. Giannini, D.P. Briskin, and M.C. Shannon. 1990. Electrostatic changes in Lycopersicon esculentum root plasma membrane resulting from salt stress. Plant Physiol. 93:471–478.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uchida, A., A.T. Jagendorf, T. Hibino, T. Takabe, and T. Takabe. 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. 163:515–523.

    Article  CAS  Google Scholar 

  • Wahome, P.K. 2001. Mechanisms of salt stress tolerance in two rose rootstocks, Rosa chinensis 'Major' and R. rubiginosa. Sci. Hortic. 87:207–216.

    Article  CAS  Google Scholar 

  • White, P.J. and M.R. Broadley. 2003. Calcium in plants. Ann. Bot. 92:487–511.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu, X., W. Zhu, H. Zhang, H. Ding, and H.J. Zhang. 2011. Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum Mill.). Acta Physiol. Plant. 33:1199–1209.

    Article  CAS  Google Scholar 

  • Xiong, J., G. Fu, L. Tao, and C. Zhu. 2010. Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch. Biochem. Biophysic. 497:13–20.

    Article  CAS  Google Scholar 

  • Yilmaz, H. and A. Kina. 2008. The influence of NaCl salinity on some vegetative and chemical changes of strawberries (Fragaria x ananassa L.). Afric. J. Biotechnol. 7:3299–3305.

    CAS  Google Scholar 

  • Zhang, F., Y.P. Wang, Y.L. Yang, H. Wu, D. Wang, and J.Q. Liu. 2007. Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ. 30:775–785.

    Article  PubMed  Google Scholar 

  • Zhang, Y.Y., J. Liu, and Y.L. Liu. 2004. Nitric oxide alleviates the growth inhibition of maize seedlings under salt stress. J. Plant Physiol. Mol. Biol. 30:455–459.

    CAS  Google Scholar 

  • Zhang, Y.Y., L.L. Wang, Y.L. Liu, Q. Zhang, Q.P. Wei, and W.H. Zhang. 2006. Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224:545–555.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, L., F. Zhang, J. Guo, Y. Yang, B. Li, and L. Zhang. 2004. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol. 134:849–857.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu, X.F., T. Jiang, Z.W. Wang, G.J. Lei, Y.Z. Shi, G.X. Li, and S.J. Zheng. 2012. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J. Hazardous Materials 15:302–307.

    Article  Google Scholar 

  • Zhu, Z.J., G.Q. Wei, J. Li, Q.Q. Qian, and J.Q. Yu. 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 167:527–533.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeid Eshghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamali, B., Eshghi, S. & Tafazoli, E. Mineral composition of ‘Selva’ strawberry as affected by time of application of nitric oxide under saline conditions. Hortic. Environ. Biotechnol. 56, 273–279 (2015). https://doi.org/10.1007/s13580-015-0116-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0116-z

Additional key words

Navigation