Skip to main content
Log in

Effects of exogenous salicylic acid on antioxidant activity and proline accumulation in apple (Malus domestica L.)

  • Research Report
  • Cultivation Physiology
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

This study was conducted to determine the effects of exogenous application of different levels of salicylic acid (SA; 0 mM, 3.62 mM, and 7.24 mM) on antioxidant activity and proline accumulation in apple (Malus domestica Borkh cv. Red Chief Delicious) trees during late spring frost. The study was performed in Ulukisla, Nigde, Turkey from December 2012 to June 2013. We measured the levels of photosynthetic pigments, total proteins and proline in leaves, as well as superoxide dismutase and peroxidase enzymatic activities. We also performed morphological observations of the trees. The study was planned according to random experimental design. We determined that SA application increased the fruit number, shoot number, and carotenoid contents in the leaves, but this increase was not statistically significant. However, the fruit weights, superoxide dismutase and peroxidase activities, as well as chlorophyll, protein, and proline levels increased significantly in response to SA treatment compared to the control. In addition, the treated fruits were darker than the control. These results suggest that treating apple trees with exogenous SA may increase antioxidant enzyme activities as well as protein and proline levels and may alleviate the effects of late spring frost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghdam, M.S., M. Asghari, H. Moradbeygi, N. Mohammadkhani, M. Mohayeji, and J. Rezapour-Fard. 2012. Effect of postharvest salicylic acid treatment on reducing chilling injury in tomato fruit. Rom. Biotechnol. Lett. 17:7466–7473.

    CAS  Google Scholar 

  • Airaki, M., M. Leterrier., R.M. Mateos, R. Valderrama, M. Chaki, J.B. Barroso, L.A. Del Rio, J.M. Palma, and F.J. Corpas. 2012. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant, Cell Environ. 35:281–295.

    Article  CAS  Google Scholar 

  • Antikainen, M. and M. Griffith. 1997. Antifreeze protein accumulation in freezing-tolerant cereals. Physiol. Plant. 99:423–432.

    Article  CAS  Google Scholar 

  • Atici, O. and B. Nalbantoglu. 2003. Antifreeze proteins in higher plants. Phytochem. 64:1187–1196.

    Article  CAS  Google Scholar 

  • Aygun, A. and B. San. 2005. The late spring frost hardiness of some apple varieties at various stages of flower buds. Ankara Univ. J. Agric. Sci. 11:283–285.

    Google Scholar 

  • Babalar, M., M. Asghari, A. Talaei, and A. Khosroshahi. 2007. Effect of pre- and postharvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chem. 105:449–453.

    Article  CAS  Google Scholar 

  • Bandurska, H. 1993. In vitro and in vivo effect of proline on nitrate reductase activity under osmotic stress in barley. Acta Physiol. Plant. 15:83–88.

    CAS  Google Scholar 

  • Bates, L.S, R.P. Waldren, and I.U. Tevre. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207.

    Article  CAS  Google Scholar 

  • Beauchamp, C. and I. Fridovich. 1971. Superoxide Dismutase: Improved assay and applicable to acrylamide gels. Anal. Biochem. 44:276–287.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. 1976. A rapid and sensitive method for quantation of microgram quantities of proteins utilizing the principle of protein dye binding. Anal. Biochem. 72:248–250.

    Article  CAS  PubMed  Google Scholar 

  • Chalker-Scott, L. 1999. Environmental significance of anthocyanins in plant stress responses. J. Photochem Photobio. 70:1–9.

    Article  CAS  Google Scholar 

  • Chen, S., L. Zimei, J. Cui, D. Jiangang, X. Xia, D. Liu, and J. Yu. 2011. Alleviation of chilling-induced oxidative damage by salicylic acid pretreatment and related gene expression in eggplant seedlings Plant Growth Regul. 65:101–108.

    CAS  Google Scholar 

  • Ding, C.K., C.Y. Wang, K.C. Gross, and D.L. Smith. 2002. Jasmonate and salicylate induce the expression of pathogensis-related-protein gens and increase resistance to chilling injury in tomato fruit. Planta 214:895–901.

    Article  CAS  PubMed  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations). 2011. FAOSTAT. http://www.fao.org.

    Google Scholar 

  • Fariduddin, Q., S. Hayat, and A. Ahmad. 2003. Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41:281–284.

    Article  CAS  Google Scholar 

  • Farooq, M., T. Aziz, S. Basra, M.A. Cheema, and H. Rehman. 2008. Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. J. Argon. Crop Sci. 194:161–168.

    Article  CAS  Google Scholar 

  • Han, C., L. Weidong, C. Ying, and Z. Lianjung. 2007. Effects of salicylic acid pretreatment on photosynthesis and its related physiological parameters in jasmine (Jasminum sambac) seedlings under cold stress. J. China Agric. Univ. 12:29–33.

    Google Scholar 

  • Hasanuzzaman, M., K. Nahar, and M. Fujita. 2013. Extreme temperature responses, oxidative stress and antioxidant defense in plants. INTECH Open Access Publisher.

    Book  Google Scholar 

  • Herzog, V. and H. Fahimi. 1973. Determination of the activity of peroxidase. Anal. Biochem. 5:554–562.

    Article  Google Scholar 

  • Janda, T., G. Szalai, K. Rios-Gonzales, O. Veisa, and E. Paldi. 2003. Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci. 164:301–306.

    Article  CAS  Google Scholar 

  • Kang, G.Z., Z.X. Wang, and G.C. Sun. 2003a. Participation of H2O2 in enhancement of cold chilling by salicylic acid in banana seedlings. Acta Bot. Sin. 45:567–573.

    CAS  Google Scholar 

  • Kang, G.Z., C.G. Wang, G.C. Sun, and Z.X. Wang. 2003b. Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ. Exp. Bot. 50:9–15.

    Article  CAS  Google Scholar 

  • Karlidag, H., E. Yildirim, and M. Turan. 2009. Exogenous applications of salicylic acid affect quality and yield of strawberry grown under antifrost heated greenhouse conditions. J. Plant Nutr. Soil Sci. 172:270–276.

    Article  CAS  Google Scholar 

  • Klessig, D.F. and J. Malamy. 1994. The salicylic acid signal in plants. Plant Mol. Biol. 26:1439–1458.

    Article  CAS  PubMed  Google Scholar 

  • Kocsy, G., G. Galiba, and C. Brunold. 2001. Role of glutathione in adaptation and signalling during chilling and cold acclimation in plant. Physiol. Plant. 113:158–164.

    Article  CAS  PubMed  Google Scholar 

  • Korkmaz, A., Y. Korkmaz, and A.R. Demirkiran. 2009. Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environ. Exp. Bot. 67:495–501.

    Article  Google Scholar 

  • Larqué-Saavedra, A. and R. Martin-Mex. 2007. Effects of salicylic acid on the bioproductivity of plants, p.15–23. In: Salicylic acid, a plant hormone. Springer, Netherlands.

    Chapter  Google Scholar 

  • Livingston, D.P. and C.A. Henson. 1998. Apoplastic sugars, fructans, fructanexohydrolase, and invertase in winter oat, responses to second-phase cold hardening. Plant Physiol. 116:403–408.

    Article  PubMed Central  CAS  Google Scholar 

  • Lopez-Delgado, H., J.F. Dat, C.H. Foyer, and I.M. Scott. 1998. Induction of thermotolerance in potato microplants by acetylsalicylic acid and H2O2. J. Exp. Bot. 49:713–730.

    Article  CAS  Google Scholar 

  • Lu, J. F. and J.H. Yu. 2004. Effects of SA on physiological indexes of chilling-tolerance in watermelon seedlings. J. Gansu Agric. Univ. 1:017.

  • McKown, R., G. Kuroki, and G. Warren. 1996. Cold responses of Arabidopsis mutants impaired in freezing tolerance. J. Exp. Bot. 47:1919–1925.

    Article  CAS  Google Scholar 

  • Melotto, M., W. Underwood, J. Koczan, K. Nomura, and S.Y. He. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980.

    Article  CAS  PubMed  Google Scholar 

  • Mutlu, S., O. Karadagoglu, O. Atici, and B. Nalbantoglu. 2013. Protective role of salicylic acid applied before cold stress on antioxidative system and protein patterns in barley apoplast. Biol. Plant. 57:507–513.

    Article  CAS  Google Scholar 

  • Okuda, T., Y. Matsuda, A. Yamanaka, and S. Sagisaka. 1991. Abrupt increase in the level of hydrogen-peroxide in leaves of winter wheat is caused by cold treatment. Plant Physiol. 97:1265–1267.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Orabi, S.A., M.G. Dawood, and S.R. Salman. 2015. Comparative study between the physiological role of hydrogen peroxide and salicylic acid in alleviating the harmful effect of low temperature on tomato plants grown under sand-ponic culture. Sci. Agric. 9:49–59.

    Google Scholar 

  • Ozsoylu, S. 2007. Social and economic geography of the district Ulukisla (Nigde). p. 97. MS Thesis, Selcuk Univ. Soical Sciences Institute, Konya.

    Google Scholar 

  • Rao, M.V., G. Paliyath, D.P. Ormrod, D.P. Murr, and C.B. Watkins. 1997. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Plant Physiol. 115:137–149.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Senaratna, T., D. Touchell, E. Bunn, and K. Dixon. 2000. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. 30:157–161.

    Article  CAS  Google Scholar 

  • Slaymaker, D.H., D.A. Navarre, D. Clark, O. delPozo, G.B. Martin, and D.F. Klessig. 2002. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant capacity and plays a role in the hypersensitive response. Proc. Nat. Aca. Sci. USA 99:11640–11645.

    Article  CAS  Google Scholar 

  • Solomon, A., S. Beer, Y. Waisel, G P. Jones, and L.G. Paleg. 1994. Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of praline related compatible solutes. Physiol. Plant. 90:198–204.

    Article  CAS  Google Scholar 

  • Tasgin, E., O. Atici, and B. Nalbantoglu. 2003. Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul. 41:231–236.

    Article  CAS  Google Scholar 

  • Thomashow, M.F. 2001. So what’s new in the field of plant cold acclimation? Lots! Plant Physiol. 125:89–93.

    Article  CAS  PubMed  Google Scholar 

  • Turkyilmaz Unal, B., O. Mentis, and E. Akyol. 2015. Effects of foliar treatments of salicylic acid on apple (Malus domestica L.) against freezing. Turkish J. Agric. Food Sci. Technol. 3:221–225.

    Google Scholar 

  • Uzunova, A.N. and L.P. Popova. 2000. Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica 38:243–250.

    Article  CAS  Google Scholar 

  • Wang, L.J. and S.H. Li. 2006. Salicylic acid-induced heat or cold tolerance in relation to Ca 2+ homeostasis and antioxidant systems in young grape plants. Plant Sci. 170:685–694.

    Article  CAS  Google Scholar 

  • Wang, Y., J. Hu, G. Qin, H. Cui, and Q. Wang. 2012. Salicylic acid analogues with biological activity may induce chilling tolerance of maize (Zea mays) seeds. Botany 90:845–855.

    Article  CAS  Google Scholar 

  • Willekens, H., S. Chamnongpol, M. Davey, M. Schraudner, C. Langebartels, and M. Van Montagu. 1997. Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J. 16:4806–4818.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Witham F.H., D.F. Blayles, and R.M. Devlin. 1971. Experiments in plant physiology. Van Nostrand Reinheld Company, New York. p. 55–56.

    Google Scholar 

  • Yildirim, E. and A. Dursun. 2008. Effect of foliar salicylic acid applications on plant growth and yield of tomato under greenhouse conditions. Proc. International Symposium on Strategies Towards Sustainability of Protected Cultivation in Mild Winter Climate. p. 395–400.

    Google Scholar 

  • Zhang, S.Q., G.D. Geng, and Y.L. Tan. 2008. Effects of salicylic acid on chilling resistance of hot-pepper. Acta Agric. Boreali-Sinica. 23:118–120.

    Google Scholar 

  • Zhang, X., L. Shen, F. Li, Y. Zhang, D. Menga, and J. Sheng. 2010. Up-regulating arginase contributes to amelioration of chilling stress and the antioxidant system in cherry tomato fruits. J. Sci. Food Agric. 90:2195–2202.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengu Turkyilmaz Unal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkyilmaz Unal, B., Mentis, O. & Akyol, E. Effects of exogenous salicylic acid on antioxidant activity and proline accumulation in apple (Malus domestica L.). Hortic. Environ. Biotechnol. 56, 606–611 (2015). https://doi.org/10.1007/s13580-015-0049-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0049-6

Additional key words

Navigation