Skip to main content
Log in

The salicylic acid signal in plants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Åberg B: Plant growth regulators. XLI. monosubstituted benzoic acids. Swedish J Agric Res 11: 93–105 (1981).

    Google Scholar 

  2. Ahl P, Gianinazzi S. b-protein as a constitutive component of highly (TMV) resistant interspecific hybrid of Nicotiana glutinosa x Nicotiana debneyi. Plant Sci Lett 26: 173–181 (1982).

    Google Scholar 

  3. Albrecht H, van deRhee MD, Bol JF: Analysis of cis-regulatory elements involved in induction of a tobacco PR-5 gene by virus infection. Plant Mol Biol 18: 155–158 (1992).

    PubMed  Google Scholar 

  4. Alexander D, Goodman RM, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D, AhlGoy P, Luntz T, Ward E, Ryals J: Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc Natl Acad Sci USA 90: 7327–7331 (1993).

    PubMed  Google Scholar 

  5. Antoniw JF, White RF: The effects of aspirin and poly-acrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopath Z 98: 331–341 (1980).

    Google Scholar 

  6. Apostol I, Heinstein PF, Low PS: Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol 90: 109–116 (1989).

    Google Scholar 

  7. Beilmann A, Albrecht K, Schultze S, Wanner G, Pfitzner UM: Activation of a truncated PR-1 promoter by endogenous enhancers in transgenic plants. Plant Mol Biol 18: 65–78 (1992).

    PubMed  Google Scholar 

  8. Bell JN, Ryder TB, Wingate VPM, Bailey JA, Lamb CJ: Differential accumulation of plant defense gene transcripts in a compatible and an incompatible plantpathogen interaction. Mol Cell Biol 6: 1615–1623 (1986).

    PubMed  Google Scholar 

  9. Ben-Tal Y, Cleland CF: Uptake and metabolism of [14C] salicylic acid in Lemna gibba G3. Plant Physiol 70: 291–296 (1982).

    Google Scholar 

  10. Bol JF, Linthorst HJM, Cornelissen BJC: Plant pathogenesis-related proteins induced by virus infection. Annu Rev Phytopath 28: 113–138 (1990).

    Article  Google Scholar 

  11. Bowler C, Alliote T, DeLoose M, VanMontagu M, Inzé D: The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO J 8: 31–38 (1989).

    PubMed  Google Scholar 

  12. Bowler C, VanMontagu M, Inzé D: Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43: 83–116 (1992).

    Article  Google Scholar 

  13. Bowles D: Defense-related proteins in higher plants. Annu Rev Biochem 59: 873–907 (1990).

    Article  PubMed  Google Scholar 

  14. Bradley DJ, Kjelbom P, Lamb CJ: Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell 70: 21–30 (1992).

    Article  PubMed  Google Scholar 

  15. Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R: Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197 (1991).

    Google Scholar 

  16. Campos N, Bako L, Feldwisch J, Schell J, Palme K: A protein from maize labeled with azido-IAA has novel β-glucosidase activity. Plant J 2: 675–684 (1992).

    Google Scholar 

  17. Carr JP, Klessig DF: The pathogenesis-related proteins of plants. In: Setlow JK (ed) Genetic Engineering Principles and Methods, vol. 11, pp. 65–109. Plenum Press, New York/London (1989).

    Google Scholar 

  18. Chadha KC, Brown SA: Biosynthesis of phenolic acids in tomato plants infected with Agrobacterium tumefaciens. Can J Bot 52: 2041–2046 (1974).

    Google Scholar 

  19. Chen Z, Klessig DF: Identification of a soluble salicylic acid-binding protein that may function in signal transduction in the plant disease resistance response. Proc Natl Acad Sci USA 88: 8179–8183 (1991).

    PubMed  Google Scholar 

  20. Chen Z, Ricigliano J, Klessig DF: Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc Natl Acad Sci USA 90: 9533–9537 (1993).

    PubMed  Google Scholar 

  21. Chen Z, Silva H, Klessig DF: Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid Science 262: 1883–1886 (1993).

    PubMed  Google Scholar 

  22. Chester KS: The problem of acquired physiological immunity in plants. Quart Rev Biol 8: 275–324 (1933).

    Article  Google Scholar 

  23. Cleland CF: Isolation of flower-inducing and flowerinhibiting factors from aphid honeydew. Plant Physiol 54: 899–903 (1974).

    Google Scholar 

  24. Cleland CF, Ajami A: Identification of the flowerinducing factor isolated from aphid honeydew as salicylic acid. Plant Physiol 54: 904–906 (1974).

    Google Scholar 

  25. Cohen JD, Bandurski RS: Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol 33: 403–430 (1982).

    Article  Google Scholar 

  26. Conn EE: Compartmentation of secondary compounds. In: Boudet AM, Alibert G, Marigo G, Lea PJ (eds) Annual Proceedings of the Phytochemical Society of Europe: Membranes and Compartmentation in the Regulation of Plant Functions, vol. 24, pp. 1–28. Clarendon Press, Oxford (1984).

    Google Scholar 

  27. Cooper-Driver G, Corner-Zamodits JJ, Swain T: The metabolic fate of hydroxybenzoic acids in plants. Z Naturforsch B 27: 943–946 (1972).

    Google Scholar 

  28. Crowell DN, John ME, Russell D, Amasino RM: Characterization of a stress-induced developmentally regulated gene family from soybean Plant Mol Biol 18: 459–466 (1992).

    PubMed  Google Scholar 

  29. Cutt JR, Klessig DF: Salicylic acid in plants: a changing perspective. Pharmaceut Technol 16: 26–34 (1992).

    Google Scholar 

  30. Cutt JR, Klessig DF: Pathogenesis-related proteins. In: Boller T, MeinsJr F (eds) Plant Gene Research: Genes Involved in Plant Defense, pp. 209–243. Springer-Verlag, Wien/New York (1992).

    Google Scholar 

  31. Davis KR, Schott E, Ausubel FM: Virulence of selected phytopathogenic Pseudomonas in Arabidopsis thaliana. Mol Plant-Microbe Interact 4: 477–488 (1991).

    Google Scholar 

  32. Debener T, Lehnackers H, Arnold M, Dangl JL: Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate. Plant J 1: 289–302 (1991).

    Google Scholar 

  33. Dempsey DA, Wobbe KK, Klessig DF: Resistance and susceptible responses of Arabidopsis thaliana to turnip crinkle virus. Phytopathology 83: 1021–1029 (1993).

    Google Scholar 

  34. Dixon RA, Harrison MJ: Activation, structure and organization of genes involved in microbial defense in plants. Adv Genet 28: 165–234 (1990).

    PubMed  Google Scholar 

  35. Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA, Dangl JL. Arabidopsis mutants stimulating disease response. Cell 77: 565–577 (1994).

    Article  PubMed  Google Scholar 

  36. Doke N: Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol Plant Path 23: 359–367 (1983).

    Google Scholar 

  37. Doke N: Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Path 23: 345–357 (1983).

    Google Scholar 

  38. Doke N, Ohashi Y: Involvement of O2 --generating systems in the induction of necrotic lesions on tobacco leaves infected with TMV. Physiol Mol Plant Path 32: 163–175 (1988).

    Google Scholar 

  39. Duchesne M, Fritig B, Hirth L: Phenylalanine ammonia-lyase in tobacco mosaic virus-infected hypersensitive tobacco; density-labelling evidence of de novo synthesis. Biochim Biophys Acta 485: 465–481 (1977).

    PubMed  Google Scholar 

  40. Enyedi AJ, Raskin I: Induction of UDP-glucose: salicylic acid glucosyltransferase activity in tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves. Plant Physiol 101: 1375–1380 (1993).

    PubMed  Google Scholar 

  41. Enyedi AJ, Yalpani N, Silverman P, Raskin I: Signal molecules in systemic plant resistance to pathogens and pests. Cell 70: 879–886 (1992).

    PubMed  Google Scholar 

  42. Enyedi AJ, Yalpani N, Silverman P, Raskin I: Localization, conjugation and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc Natl Acad Sci USA 89: 2480–2484 (1992).

    PubMed  Google Scholar 

  43. Estruch JJ, Chriqui D, Grossmann K, Schell J, Spena A: The plant oncogene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J 10: 2889–2895 (1991).

    PubMed  Google Scholar 

  44. Estruch JJ, Schell J, Spena A: The protein encoded by the rolB plant oncogene hydrolyzes indole glucoside. EMBO J 10: 3125–3128 (1991).

    PubMed  Google Scholar 

  45. Farmer EE, Johnson RR, Ryan CA: Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98: 995–1002 (1992).

    Google Scholar 

  46. Fleming TM, McCarthy DA, White RF, Antoniw JF, Mikkelsen JD: Induction and characterization of some of the pathogenesis-related proteins in sugar beet. Physiol Mol Plant Path 39: 147–160 (1991).

    Google Scholar 

  47. Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J: Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754–756 (1993).

    Google Scholar 

  48. Gianinazzi S: Hypersensibilite aux virus, temperatures et proteines solubles chez le Nicotiana tabacum cv. Xanthi-nc. CR Acad Sci Paris D 270: 2382–2386 (1970).

    Google Scholar 

  49. Gianinazzi S, Ahl P: The genetic and molecular basis of b-proteins in the genus Nicotiana. Neth J Plant Path 89: 275–281 (1983).

    Google Scholar 

  50. Goldsbrough AP, Albrecht H, Stratford R: Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J 3: 563–571 (1993).

    PubMed  Google Scholar 

  51. Greenberg JT, Ausubel FM: Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J 4: 327–341 (1994).

    Google Scholar 

  52. Greenberg JT, Guo A, Klessig DF, Ausubel FM: Programmed cell death in plants: a pathogen-triggered response activated coordinately with multiple defense functions. Cell 77: 551–563 (1994).

    PubMed  Google Scholar 

  53. Hahlbrook K, Scheel D: Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40: 347–369 (1989).

    Article  Google Scholar 

  54. Hagiwara H, Matsuoka M, Ohshima M, Watanabe M, Hosokawa D, Ohashi Y: Sequence-specific binding of protein factors to two independent promoter regions of the acidic tobacco pathogenesis-related-1 protein gene (PR-1). Mol Gen Genet 240: 197–205 (1993).

    PubMed  Google Scholar 

  55. Harborne JB: Phenolic glycosides and their natural distribution. In: Harborne JB (ed) Biochemistry of Phenolic Compounds, pp. 129–169. Academic Press. London (1964).

    Google Scholar 

  56. Hennig J, Dewey RE, Cutt JR, Klessig DF: Pathogen, salicylic acid and developmental dependent expression of a β-1,3-glucanase/GUS gene fusion in transgenic tobacco plants. Plant J 4: 481–493 (1993).

    PubMed  Google Scholar 

  57. Hennig J, Malamy J, Grynkiewicz G, Indulski J, Klessig DI: Interconversion of the salicylic acid signal and its glucoside in tobacco. Plant J 4: 593–600 (1993).

    PubMed  Google Scholar 

  58. Hooft van Huijsduijnen RAM, Alblas SW, deRijk RH, Bol JF: Induction by SA of pathogenesis-related proteins and resistance to alfalfa mosaic virus infection in various plant species. J Gen Virol 67: 2143–2153 (1986).

    Google Scholar 

  59. Ishige F, Mori H, Yamazaki K, Imaseki H: Cloning of a complementary DNA that encodes an acidic chitinase which is induced by ethylene and expression of the corresponding gene. Plant Cell Physiol 34: 103–111 (1993).

    PubMed  Google Scholar 

  60. Ishikawa M, Obata F, Kumagai T, Ohno T. Isolation of mutants of Arabidopsis thaliana in which accumulation of tobacco mosaic virus coat protein is reduced to low levels. Mol Gen Genet 230: 33–38 (1991).

    PubMed  Google Scholar 

  61. Kassanis B: Some effects of high temperature on the susceptibility of plants to infection with viruses. Ann Appl Biol 39: 358–369 (1952).

    Google Scholar 

  62. Kauss H, Franke R, Krause K, Conrath U, Jeblick W, Grimmig B, Matern U: Conditioning of parsley (Petroselinum crispum L.) suspension cells increases elicitor-induced incorporation of cell wall phenolics. Plant Physiol 102: 459–466 (1933).

    Google Scholar 

  63. Keen NT: Pathogenic strategies for fungi. In: Lugtenberg B (ed) Recognition in Microbe-Plant Symbiotic and Pathogenic Interactions. NATO-ASI Series H, vol. 4, pp. 171–188. Springer-Verlag, Berlin/New York (1986).

    Google Scholar 

  64. Keppler LD, Baker CJ: O2 --initiated lipid peroxidation in a bacteria-induced hypersensitive reaction in tobacco cell suspensions. Phytopathology 79: 555–562 (1989).

    Google Scholar 

  65. Keppler LD, Novacky A: Involvement of membrane lipid peroxidation in the development of a bacterially induced hypersensitive reaction. Phytopathology 76: 104–108 (1986).

    Google Scholar 

  66. Kim SR, Kim Y, An G: Identification of methyl jasmonate and salicylic acid response elements from the nopaline synthase (nos) promoter. Plant Physiol 103: 97–103 (1993).

    PubMed  Google Scholar 

  67. Koch E, Slusarenko A: Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2: 437–445 (1990).

    Article  PubMed  Google Scholar 

  68. Kunkel BN, Bent AF, Dahlbeck D, Innes RW, Staskawicz B: RPS2, an Arabidopsis disease resistant locus specifying recognition of Pseudomonas syringae expressing the avirulence gene avrRpt2. Plant Cell 5: 865–875 (1993).

    Article  PubMed  Google Scholar 

  69. Lawton KA, Potter SL, Uknes S, Ryals J: Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6: 581–588 (1994).

    PubMed  Google Scholar 

  70. Lawton KA, Uknes S, Friedrich L, Gaffney T, Alexander D, Goodman R, Métraux JP, Kessman H, Ahl-Goy P, Gut-Rella M, Ward D, Ryals J: The molecular biology of systemic acquired resistance. In: B.Fritig, M.Legrande (eds) Developments in Plant Biology, Mechanisms of Plant Defense Responses, pp. 422–432. Kluwer Academic Publishers, Dordrecht/Boston/London (1993).

    Google Scholar 

  71. Lee TT, Skoog F: Effects of substituted phenols on bud formation and growth of tobacco tissue culture. Physiol Plant 18: 386–402 (1965).

    Google Scholar 

  72. Legendre L, Rueter S, Heinstein PF, Low PS: Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiol 102: 233–240 (1993).

    PubMed  Google Scholar 

  73. Leisner SM, Howell SH: Symptom variation in different Arabidopsis thaliana ecotypes produced by cauliflower mosaic virus. Phytopathology 82: 1042–1046 (1992).

    Google Scholar 

  74. León J, Yalpani N, Raskin I, Lawton MA: Induction of benzoic acid 2-hydroxylase in virus-inoculated tobacco. Plant Physiol 103: 323–328 (1993).

    PubMed  Google Scholar 

  75. Leslie CA, Romani RJ: Inhibition of ethylene biosynthesis by salicylic acid. Plant Physiol 88: 833–837 (1988).

    Google Scholar 

  76. Letham DS, Palni LMS: The biosynthesis and metabolism of cytokinins. Annu Rev Plant Physiol 34: 163–197 (1983).

    Article  Google Scholar 

  77. Liu D, Raghothama KG, Hasegawa PM, Bressan RA: Osmotin overexpression in potato delays development of disease symptoms. Proc Natl Acad Sci USA 91: 1888–1892 (1994).

    PubMed  Google Scholar 

  78. Linthorst HJM: Pathogenesis-related proteins of plants. Crit Rev Plant Sci 10: 123–150 (1991).

    Google Scholar 

  79. Madamanchi NR, Kuć J: Induced systemic resistance in plants. In: Cole GT, Hoch HC (eds) The Fungal Spore and Disease Initiation in Plants and Animals, pp. 347–362. Plenum Press, New York (1991).

    Google Scholar 

  80. Malamy J, Klessig DF: Salicylic acid and plant disease resistance. Plant J 2: 643–654 (1992).

    Google Scholar 

  81. Malamy J, Carr JP, Klessig DF, Raskin I: Salicylic acid — a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250: 1001–1004 (1990).

    Google Scholar 

  82. Malamy J, Hennig J, Klessig DF: Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell 4: 359–366 (1992).

    Article  PubMed  Google Scholar 

  83. Malamy J, Sánchez-Casas P, Hennig J, Guo A, Klessig DF: Dissection of the salicylic acid signalling pathway for defense responses in tobacco. Plant Physiol, submitted (1994).

  84. Matsuta C, van denBulcke M, Bauw G, vanMontagu M, Caplan AG: Differential effects of elicitors on the viability of rice suspension cells. Plant Physiol 97: 619–629 (1991).

    Google Scholar 

  85. Matthews REF: Plant Virology, 3rd ed. Harcourt Brace Jovanovich, San Diego, CA (1991).

    Google Scholar 

  86. Mauch F, Mauch-Mani B, Boller T: Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of β-1,3-glucanase and chitinase. Plant Physiol 88: 936–942 (1988).

    Google Scholar 

  87. Mauch-Mani B, Slusarenko A: Systematic acquired resistance in Arabidopsis thaliana induced by a predisposing infection with a pathogenic isolate of Fusarium oxysporum. Mol Plant-Microbe Interact 7: 378–383 (1994).

    Google Scholar 

  88. McGurl B, Pearce G, Orizco-Cardensa M, Ryan C: Structure, expression and antisense inhibition of the systemin precursor gene. Science 255: 1570–1573 (1992).

    PubMed  Google Scholar 

  89. Meeuse BJD: Thermogenic respiration in aroids. Annu Rev Plant Physiol 26: 117–126 (1975).

    Article  Google Scholar 

  90. Melcher U: Symptoms of cauliflower mosaic virus infection in Arabidopsis thaliana and turnip. Bot Gaz 150: 139–147 (1989).

    Article  Google Scholar 

  91. Métraux JP, Ahl-Goy P, Staub T, Speich J, Steinemann A, Ryals J, Ward E: Induced resistance in cucumber in response to 2,6-dichloroisonicotinic acid and pathogens. In: Hennecke H, Verma DPS (eds) Advances in Molecular Genetics of Plant-Microbe Interactions, vol. 1, pp. 432–439. Kluwer Academic Publishers, Dordrecht (1991).

    Google Scholar 

  92. Métraux JP, Burkhart W, Moyer M, Dincher S, Middlesteadt W, Williams S, Payne G, Carnes M, Ryals J: Isolation of a complementary DNA encoding a chitinase with structural homology to a bifunctional lysozyme/chitinase. Proc Natl Acad Sci USA 86: 896–900 (1989).

    PubMed  Google Scholar 

  93. Métraux JP, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W, Inverardi B: Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004–1006 (1990).

    Google Scholar 

  94. Meuwly Ph, Mölders W, Summermatter K, Sticher L, Métraux JP: Salicylic acid and chitinase in infected cucumber plants. Acta Hort, in press (1994).

  95. Meyerowitz EM: Arabidopsis, a useful weed. Cell 56: 263–269 (1989).

    PubMed  Google Scholar 

  96. Mills PR, Wood RKS: The effects of polyacrylic acid, aspirin and salicylic acid on resistance of cucumber to Colletotrichum lagenarium. Phytopath Z 111: 209–216 (1984).

    Google Scholar 

  97. Ohashi Y, Ohshima M, Itoh H, Matsuoka M, Watanabe S, Murakami T, Hosokawa D: Constitutive expression of stress-inducible genes, including pathogenesis-related 1 protein gene in a transgenic interspecific hybrid of Nicotiana glutinosa x Nicotiana debneyi. Plant Cell Physiol 33: 177–187 (1992).

    Google Scholar 

  98. Ohshima M, Itoh H, Matsuoka M, Murakami T, Ohashi Y: Analysis of stress-induced or salicylic acid-induced expression of the pathogenesis-related 1a protein gene in transgenic tobacco. Plant Cell 2: 95–106 (1990).

    Article  PubMed  Google Scholar 

  99. Palva TK, Hurtig M, Saindrenan P, Palva ET: Salicylic acid-induced resistance to Erwinia carotovora subsp. carotovora in tobacco. Mol Plant-Microbe Interact 7: 356–363 (1994).

    Google Scholar 

  100. Pegg GF: The involvement of ethylene in plant pathogenesis. In: Heitefuss R, Williams PH (eds) Encyclopedia of Plant Physiology, New Series, vol. 4, pp. 582–591. Springer-Verlag, Heidelberg (1976).

    Google Scholar 

  101. Peña-Cortés H, Albrecht T, Prat S, Water EW, Willmitzer L: Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191: 123–128 (1993).

    Google Scholar 

  102. Ponstein AS, Bres-Vloemans SA, Sela-Buurlage MB, van denElzen PJM, Melchers LS, Cornelissen BJC: A novel pathogen- and wound-inducible tobacco (Nicotiana tabacum) protein with antifungal activity. Plant Physiol 104: 109–118 (1994).

    Article  PubMed  Google Scholar 

  103. Pucacka S: Role of phenolic compounds in the resistance of poplars to the fungus Dothichiza populae. Arbor Kornickie 25: 257–268 (1980).

    Google Scholar 

  104. Qin XF, Holuigue L, Horvath DM, Chua N-H: Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element. Submitted (1994).

  105. Rainsford KD: Aspirin and the Salicylates. Butterworth, London (1984).

    Google Scholar 

  106. Raskin I: Role of salicylic acid in plants. Annu Rev Plant Physiol Plant Mol Biol 43: 439–463 (1992).

    Article  Google Scholar 

  107. Raskin I: Salicylate, a new plant hormone. Plant Physiol 99: 799–803 (1992).

    Google Scholar 

  108. Raskin I, Ehmann A, Melander WR, Meeuse BJD: Salicylic acid—a natural inducer of heat production in Arum lilies. Science 237: 1601–1602 (1987).

    Google Scholar 

  109. Raskin I, Skubatz H, Tang W, Meeuse BJD: Salicylic acid levels in thermogenic and non-thermogenic plants. Ann Bot 66: 369–373 (1990).

    Google Scholar 

  110. Raskin I, Turner IM, Melander WR: Regulation of heat production in the inflorescences of an arum lily by endogenous salicylic acid. Proc Natl Acad Sci USA 86: 2214–2218 (1989).

    Google Scholar 

  111. Rasmussen JB, Hammerschmidt R, Zook M: Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiol 97: 1342–1347 (1991).

    Google Scholar 

  112. Raz V, Fluhr R: Calcium requirement for ethylene-dependent responses. Plant Cell 4: 1123–1130 (1992).

    Article  PubMed  Google Scholar 

  113. Reinecke DM, Bandurski RS: Auxin biosynthesis and metabolism. In: Davis PJ (ed) Plant Hormones and their Role in Plant Growth and Development, pp. 24–42. Martinus Nijhoff, Dordrecht (1988).

    Google Scholar 

  114. Rhoads DM, McIntosh L: Salicylic acid regulation of respiration in higher plants: alternative oxidase expression. Plant Cell 4: 1131–1139 (1992).

    Article  PubMed  Google Scholar 

  115. Rhoads DM, McIntosh L: The salicylic acid-inducible alternative oxidase gene aox1 and genes encoding pathogenesis-related proteins share regions of sequence similarity in their promoters. Plant Mol Biol 21: 615–624 (1993).

    PubMed  Google Scholar 

  116. Rhoads DM, McIntosh L: Cytochrome and alternative pathway respiration in tobacco; effects of salicylic acid. Plant Physiol 103: 877–883 (1993).

    PubMed  Google Scholar 

  117. Roggero P, Pennazio S: Effects of salicylate on systemic invasion of tobacco plants by various viruses. J Phytopath 123: 207–216 (1988).

    Google Scholar 

  118. Roggero P, Pennazio S: Salicylate does not induce resistance to plant viruses, or stimulate pathogenesis-related protein production in soybean. Microbiologica 14: 65–69 (1991).

    Google Scholar 

  119. Romani RJ, Hess BM, Leslie CA: Salicylic acid inhibition of ethylene production by apple discs and other plant tissues. J Plant Growth Regul 8: 63–70 (1989).

    Google Scholar 

  120. Ross AF: Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14: 329–339 (1961).

    Article  PubMed  Google Scholar 

  121. Ross AF: Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340–358 (1961).

    Article  PubMed  Google Scholar 

  122. Roustan JP, Latche A, Fallot J: Inhibition of ethylene production and stimulation of carrot somatic embryogenesis by salicylic acid. Biol Plant 32: 273–276 (1990).

    Google Scholar 

  123. Ryals J, Ward E, Ahl-Goy P, Métraux JP: Systemic acquired resistance: an inducible defence mechanism in plants. In: Wray JL (ed) Inducible Plant Proteins, pp. 205–229, Society for Experimental Biology Seminar series 49 (1992).

  124. Ryan CA: Proteinase inhibitors in plants: genes for improving defenses against insects and pathogens. Annu Rev Phytopath 28: 425–449 (1990).

    Article  Google Scholar 

  125. Saint-Pierre B, Miville L, Dion P: The effects of salicylates on phenomena related to crown gall. Can J Bot 62: 729–734 (1984).

    Google Scholar 

  126. Samac DA, Shah DM: Developmental and pathogen-induced activation of the Arabidopsis acidic chitinase promoter. Plant Cell 3: 1063–1072 (1991).

    Article  PubMed  Google Scholar 

  127. Schneider G, Jensen E, Spray C, Phinney BO: Hydrolysis and reconjugation of gibberelin A20 glucosyl ester by seedlings of Zea mays L. Proc Natl Acad Sci USA 89: 8045–8048 (1992).

    PubMed  Google Scholar 

  128. Schreck R, Baeuerle PA: A role for oxygen radicals as second messengers. Trends Cell Biol 1: 39–42 (1991).

    Article  PubMed  Google Scholar 

  129. Schultz M, Schnabl H, Manthe B, Schweihofen B, Casser I: Uptake and detoxification of salicylic acid by Vicia faba and Fagopyrum esculentum. Phytochemistry 33: 291–294 (1993).

    Article  Google Scholar 

  130. Sijmons PC, Grundler FMW, vonMende N, Burrows PR, Wyss U: Arabidopsis thaliana as a new model host for plant-parasitic nematodes. Plant J 1: 245–254 (1991).

    Article  Google Scholar 

  131. Silverman P, Nuckles E, Ye XS, Kuć J, Raskin I: Salicylic acid, ethylene, and pathogen resistance in tobacco. Mol Plant-Microbe Interact 6: 775–781 (1993).

    Google Scholar 

  132. Simmons CR, Litts JC, Huang N, Rodriguez RL: Structure of a rice β-glucanase gene regulated by ethylene, cytokinin, wounding, salicylic acid and fungal elicitors. Plant Mol Biol 18: 33–45 (1992).

    PubMed  Google Scholar 

  133. Simon AE, Li XH, Lew JE, Stange R, Zhang C, Polacco M, Carpenter CD: Susceptibility and resistance of Arabidopsis thaliana to turnip crinkle virus. Mol Plant-Microbe Interact 5: 496–503 (1992).

    Google Scholar 

  134. Simpson RB, Johnson LJ: Arabidopsis thaliana as a host for Xanthomonas campestris pv. campestris. Mol Plant-Microbe Interact 3: 233–237 (1990).

    Google Scholar 

  135. Singh L: In vitro screening of some chemicals against three phytopathogenic fungi. J Indian Bot Soc 57: 191–195 (1978).

    Google Scholar 

  136. Smith JA, Hammerschmidt R, Fulbright DW: Rapid induction of systemic induction of systemic resistance in cucumber by Pseudomonas syringae pv. syringae. Physiol Mol Plant Pathol 38: 223–235 (1991).

    Google Scholar 

  137. Sutherland MW: The generation of oxygen radicals during host plant responses to infection. Physiol Mol Plant Path 39: 79–93 (1991).

    Google Scholar 

  138. Summermatter K, Meuwly Ph, Mölders W, Métraux JP: Salicylic acid levels in Arabidopsis thaliana after treatments with Pseudomonas syringae or synthetic inducers. Acta Hort, in press (1994).

  139. Takahashi H, Goto N, Ehara Y: Hypersensitive response in cucumber mosaic virus-inoculated Arabidopsis thaliana. Plant J, in press (1994).

  140. Tanaka S, Hayakawa K, Umetani Y, Tabata M: Glucosylation of isomeric hydroxybenzoic acids by cell suspension cultures of Mallotus japonicus. Phytochemistry 29: 1555–1558 (1990).

    Article  Google Scholar 

  141. Towers GHN: Metabolism of phenolics in higher plants and microorganisms. In: Harborne JB (ed) Biochemistry of Phenolic Compounds, pp. 249–294. Academic Press, London (1964).

    Google Scholar 

  142. Tsuji J, Somerville SC, Hammerschmidt R: Identification of a gene in Arabidopsis thaliana that controls resistance to Xanthomonas campestris pv. campestris. Physiol Mol Plant Path 38: 57–65 (1991).

    Google Scholar 

  143. Uknes S, Dincher S, Friedrich L, Negrotto D, Williams S, Thompson-Taylor H, Potter S, Ward E, Ryals J: Regulation of pathogenesis-related protein-1a gene expression in tobacco. Plant Cell 5: 159–169 (1993).

    Article  PubMed  Google Scholar 

  144. Uknes S, Mauch-Mani B, Moyer M, Potter S, Williams S, Dincher S, Chandler D, Slusarenko A, Ward E, Ryals J: Acquired resistance in Arabidopsis. Plant Cell 4: 645–655 (1992).

    Article  PubMed  Google Scholar 

  145. Uknes S, Winter AM, Delaney T, Vernooij B, Morse A, Friedrich L, Nye G, Potter S, Ward E, Ryals J: Biological induction of systemic acquired resistance in Arabidopsis. Mol Plant-Microbe Interact 6: 692–698 (1993).

    Google Scholar 

  146. Umetani Y, Kodakari E, Yamamura T, Tanaka S, Tabata M: Glucosylation of salicylic acid by cell suspension cultures of Mallotus japonicus. Plant Cell Rep 9: 325–327 (1990).

    Article  Google Scholar 

  147. vanDamme EJM, Willems P, Torrekens S, vanLeuven F, Peumans WJ: Garlic (Allium sativum) chitinases: characterization and molecular cloning. Physiol Plant 87: 177–186 (1993).

    Article  Google Scholar 

  148. vanLoon LC: The induction of pathogenesis-related proteins by pathogens and specific chemicals. Neth J Plant Path 89: 265–273 (1983).

    Google Scholar 

  149. vanLoon LC, Antoniw JF: Comparison of the effects of salicylic acid and ethephon with virus-induced hypersensitivity and acquired resistance in tobacco. Neth J Plant Path 88: 237–256 (1982).

    Google Scholar 

  150. van deRhee MD, Bol JF: Induction of the tobacco PR-1a gene by virus infection and salicylate treatment involves an interaction between multiple regulatory elements. Plant J 3: 71–82 (1993).

    Google Scholar 

  151. van deRhee MD, Lemmers R, Bol JF: Analysis of regulatory elements involved in stress-induced and organ-specific expression of tobacco acidic and basic β-1,3-glucanase genes. Plant Mol Biol 21: 451–461 (1993).

    PubMed  Google Scholar 

  152. van deRhee MD, vanKan JAL, Gonzalez-Jaen MT, Bol JF: Analysis of regulatory elements involved in the induction of two tobacco genes by salicylate treatment and virus infection. Plant Cell 2: 357–366 (1990).

    Article  PubMed  Google Scholar 

  153. Vane JR: Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature-New Biol 231: 232–235 (1971).

    PubMed  Google Scholar 

  154. Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J: Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6: 959–968 (1994).

    Article  PubMed  Google Scholar 

  155. Vigers AJ, Roberts WK, Selitrennikoff CP: A new family of plant antifungal proteins. Mol Plant-Microbe Interact 4: 315–323 (1991).

    PubMed  Google Scholar 

  156. Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhol DL, Alexander DC, Ahl-Goy P, Métraux JP, Ryals J: Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085–1094 (1991).

    Article  PubMed  Google Scholar 

  157. Weete JD: Induced systemic resistance to Alternaria cassiae in sicklepod. Physiol Mol Plant Path 40: 437–445 (1992).

    Google Scholar 

  158. Weissman G: Aspirin. Sci Am 264: 84–90 (1991).

    Google Scholar 

  159. Whalen MC, Innes RW, Bent AF, Staskawicz BJ: Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell 3: 49–59 (1991).

    Article  PubMed  Google Scholar 

  160. White RF: Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99: 410–412 (1979).

    Article  Google Scholar 

  161. White RF: Serological detection of pathogenesis-related proteins. Neth J Plant Path 89: 311–317 (1983).

    Google Scholar 

  162. White RF, Antoniw JF: Virus-induced resistance responses in plants. Crit Rev Plant Sci 9: 443–455 (1991).

    Google Scholar 

  163. White RF, Rybicki EP, vonWechmar MB, Dekker JL, Antoniw JF: Detection of PR-1 type proteins in Amaranthaceae, Chemopodiaceae, Graminae and Solanaceae by immunoelectroblotting. J Gen Virol 68: 2043–2048 (1987).

    Google Scholar 

  164. Wilson DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O'Donnell PJ, Bowles DJ: Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360: 62–65 (1992).

    Article  Google Scholar 

  165. Woloshuk CP, Meulenhoff JS, Sela-Buurlage M, van denElzen PJM, Cornelissen BJC: Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 3: 619–628 (1991).

    Article  PubMed  Google Scholar 

  166. Yalpani N, León J, Lawton MA, Raskin I: Pathway of salicylic acid biosynthesis in healthy and virus-inoculated tobacco. Plant Physiol 103: 315–321 (1993).

    PubMed  Google Scholar 

  167. Yalpani N, Schulz M, Davis MP, Balke NE: Partial purification and properties of an inducible uridine 5′-diphosphate-glucose: salicylic acid glucosyltransferase from oat roots. Plant Physiol 100: 457–463 (1992).

    Google Scholar 

  168. Yalpani N, Shulaev V, Raskin I: Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco. Phytopathology 83: 702 (1993).

    Google Scholar 

  169. Yalpani N, Silverman P, Wilson TMA, Kleier DA, Raskin I: Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3: 809–818 (1991).

    Article  PubMed  Google Scholar 

  170. Yang SF, Pratt HK: The physiology of ethylene in wounded plant tissue. In: Wahl G (ed) Biochemistry of Wounded Plant Tissues, pp. 595–622. Walter de Gruyter, Berlin (1978).

    Google Scholar 

  171. Ye XS, Pan SQ, Kuć J: Pathogenesis-related proteins and systemic resistance to blue mould and tobacco mosaic virus induced by tobacco mosaic virus, Peronspora tabacina and aspirin. Physiol Mol Plant Path 35: 161–175 (1989).

    Google Scholar 

  172. Ye XS, Pan SQ, Kuć J: Specificity of induced systemic resistance as elicited by ethephon and tobacco mosaic virus in tobacco. Plant Sci 84: 1–9 (1992).

    Article  Google Scholar 

  173. Yoshikawa M, Tsuda M, Takeuchi Y: Resistance to fungal diseases in transgenic tobacco plants expressing the phytoalexin elicitor-releasing factor, β-1,3-endoglucanase from soybean. Naturwissenschaften 80: 417–420 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klessig, D.F., Malamy, J. The salicylic acid signal in plants. Plant Mol Biol 26, 1439–1458 (1994). https://doi.org/10.1007/BF00016484

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00016484

Key words

Navigation