Skip to main content
Log in

Pollen degeneration in three functional male-sterile lines of eggplant with the wild Solanum cytoplasms

  • Research Report
  • Genetics and Breeding
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Pollen developing process was studied to identify the stages of pollen degeneration and to elucidate the factors controlling low pollen fertility in three functional cytoplasmic male-sterile (CMS) lines of eggplant ‘Uttara’. The CMS lines of eggplant were developed by repeated backcrossing using the cytoplasms of wild Solanum species S. kurzii Brace & Prain, S. violaceum Ort., and S. virginianum L.. Anthers were squashed in 1% aceto-carmine to assess pollen staining ability and pollen degeneration at different stages of development. Unicellular microspores were released from tetrads after normal meiotic division. Pollen degeneration occurred at different stages of pollen development in CMS lines such as at unicellular microspore (29.3–36.3%), early bicellular pollen (5.5–12.2%), and late bicellular pollen (9.3–10.2%) stages. On the other hand, in eggplant, only 3.8% pollen was degenerated at unicellular microspore stage and there was negligible pollen degeneration at other stages. Among the stained pollen, abnormally stained (partly and faintly) pollen were found significantly higher in the CMS lines as compared to eggplant. Well stained pollen was varied from 23.2–31.9% in the CMS lines which was significantly lower than that of eggplant. Number of pollens per anther of CMS lines did not vary significantly from eggplant, except the CMS line with S. virginianum cytoplasm. In vitro pollen germination rate in the CMS lines was found to be significantly lower than that of eggplant. Starch accumulation and hydrolysis during pollen maturation were found incomplete in the CMS lines. Degeneration of pollen in different stages, abnormally stained pollen, incomplete starch accumulation and hydrolysis were most likely causes for low pollen fertility in these three CMS lines of eggplant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abdallah, M.M.F. and J.G.T. Hermsen. 1972. Plasmons and male sterility types in Solanum verrucosum and its interspecific hybrid derivatives. Euphytica 21:209–220.

    Article  Google Scholar 

  • Aloni, B., M. Peet, M. Pharr, and L. Karni. 2001. The effect of high temperature and high atmospheric CO2 on carbohydrate changes in bell pepper (Capsicum annum) pollen in relation to its germination. Physiol. Plant. 112:505–512.

    Article  CAS  PubMed  Google Scholar 

  • Artschwager, E. 1947. Pollen degeneration in male-sterile sugar beets, with special reference to the tapetal plasmodium. J. Agric. Res. 75:191–197.

    Google Scholar 

  • Chauhan, S.V.S. 1984. Studies in genic male-sterile Solanum melongena L. Indian J. Genet. Plant Breed. 44:367–371.

    Google Scholar 

  • Clément, C. and J.C. Audran. 1999. Anther and Pollen, p. 69–90. In: C. Clément, E. Paciniv. and J.C. Audran (eds.). From biology to biotechnology. Springer, Heidelberg.

    Google Scholar 

  • Datta, R., K.C. Chamusco, and P.S. Chourey. 2002. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol. 130:1645–1656.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Vries, A.P. and T.S. Ie. 1970. Electron-microscopy on anther tissue and pollen of male sterile and fertile wheat Triticum aestivum L. Euphytica 19:103–120.

    Article  Google Scholar 

  • Dong, Q.H., R.Q. Li, and J.B. Wang. 1997. Cytological studies on microsporogenesis of the male sterile Brassica camperstris L. ssp. Chinensis var. utilis Tsen et Lee. Acta Hortic. Sin. 24:150–154.

    Google Scholar 

  • Dorion, S., S. Lalonde, and H.S. Saini. 1996. Induction of male sterility in wheat (Triticum aestivum L.) by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol. 111:137–145.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fang, M., R. Mao, and W. Xie. 1985. Breeding of cytoplasmically inherited male sterile lines of egg-plant (Solanum melongena L.). Acta Hortic. Sin. 12:261–266. (in Chinese with English abstract)

    Google Scholar 

  • García, C.C. 2007. Pollen starch reserves in tomato relatives: Ecophysiological implications. Grana 46:13–19.

    Article  Google Scholar 

  • Glover, J., M. Grelon, S. Craig, A. Chaudhury, and E. Dennis. 1998. Cloning and characterization of MS5 from Arabidopsis: A gene critical in male meiosis. Plant J. 15:345–356.

    Article  CAS  PubMed  Google Scholar 

  • Goetz, M., D.E. Godt, A. Guivarc’h, U. Kahmann, D. Chriqui, and T. Roitsch. 2001. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc. Natl. Acad. Sci. USA. 98:6522–6527.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grun, P. and M. Aubertin. 1966. Cytological expression of cytoplasmic male sterility in Solanum. Am. J. Bot. 53:295–301.

    Article  Google Scholar 

  • Hasnunnahar, M., M.M.R. Khan, and S. Isshiki. 2012. Inheritance analysis of fertility restoration genes (Rf) in a male sterile system of eggplant using cytoplasm of Solanum grandifolium. Aust. J. Crop Sci. 6:475–479.

    CAS  Google Scholar 

  • Heberle-Bors, E. 1982. In vitro pollen embryogenesis in Nicotiana tabacum L. and its relation to pollen sterility, sex balance, and floral induction of the pollen donor plants. Planta 156:396–401.

    Article  CAS  PubMed  Google Scholar 

  • Heberle-Bors, E. and J. Reinert. 1979. Androgenesis in isolated pollen cultures of Nicotiana tabacum: Dependence upon pollen development. Protoplasma 99:237–245.

    Article  Google Scholar 

  • Horner, M. and H.E. Street. 1978. Pollen dimorphism-origin and significance in pollen plant formation by anther culture. Ann. Bot. 42:763–777.

    Google Scholar 

  • Isshiki, S., H. Okubo. and K. Fujieda. 1994. Phylogeny of eggplant and related Solanum species constructed by allozyme variation. Sci. Hortic. 59:171–176.

    Article  Google Scholar 

  • Isshiki, S. and N. Kawajiri. 2002. Effect of cytoplasm of Solanum violaceum Ort. on fertility of eggplant (S. melongena L.). Sci. Hortic. 93:9–18.

    Article  Google Scholar 

  • Isshiki, S., S. Suzuki, and K. Yamashita. 2003. RFLP analysis of mitochondrial DNA in eggplant and related Solanum species. Genet. Res. Crop Evol. 50:133–137.

    Article  CAS  Google Scholar 

  • Isshiki, S., T. Uchiyama, Y. Tashiro, and S. Miyazaki. 1998. RFLP analysis of a PCR amplified region of chloroplast DNA in eggplant and related Solanum species. Euphytica 102:295–299.

    Article  CAS  Google Scholar 

  • Jasmin, J.J. 1954. Male sterility in Solanum melongena L.: Preliminary report on a functional type of male sterility in eggplants. Proc. Am. Soc. Hortic. Sci. 63:443.

    Google Scholar 

  • Khan, M.M.R. and S. Isshiki. 2008. Development of a male sterile eggplant by utilizing the cytoplasm of Solanum virginianum and a biparental transmission of chloroplast DNA in backcrossing. Sci. Hortic. 117:316–320.

    Article  CAS  Google Scholar 

  • Khan, M.M.R. and S. Isshiki. 2009. Functional male-sterility expressed in eggplant (Solanum melongena L.) containing the cytoplasm of S. kurzii Brace & Prain. J. Hortic. Sci. Biotechnol. 84:92–96.

    Google Scholar 

  • Khan, M.M.R. and S. Isshiki. 2010. Development of the male-sterile line of eggplant utilizing the cytoplasm of Solanum aethiopicum L. Aculeatum Group. J. Jpn. Soc. Hortic. Sci. 79:348–353.

    Article  CAS  Google Scholar 

  • Khan, M.M.R. and S. Isshiki. 2011. Development of a cytoplasmic male-sterile line of eggplant (Solanum melongena L.) with the cytoplasm of Solanum anguivi. Plant Breed. 130:256–260.

    Article  CAS  Google Scholar 

  • Kini, A.V., A. Seetharam, and S.S. Joshi. 1994. Mechanism of pollen abortion in cytoplasmic male sterile line of sunflower. Cytologia 59:121–124.

    Article  Google Scholar 

  • La Cour, L.F. 1949. Nuclear differentiation in the pollen grain. Heredity 3:319–337.

    Article  CAS  PubMed  Google Scholar 

  • Laser, K.D. and N.R. Lwesten. 1972. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot. Rev. 38:427–454.

    Article  Google Scholar 

  • Li, X.Q., B.H. Wan, J.L. Liu, Y.L. Zheng, J.S. Li, and S.Z. Xu. 2004. Cytological observation on microspore genesis of WBMs-a new line of S-CMS maize. Sci. Agric. Sin. 37:1261–1264.

    Google Scholar 

  • Masuda, M., Y. Ma, K. Uchida, and K. Kato. 1999. Characterization and genetic analysis of male sterile mutant induced in tomato cv. First, having mature pollen stainable with acetocarmine. J. Jpn. Soc. Hortic. Sci. 68:566–568.

    Article  CAS  Google Scholar 

  • McCormick, S. 1993. Male gametophyte development. Plant Cell 5:1265–1275.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nashilevitz, S., C. Melamed-Bessudo, A. Aharoni, J. Kossmann, S. Wolf, and A.A. Levy. 2009. The legwd mutant uncovers the role of starch phosphorylation in pollen development and germination in tomato. Plant J. 57:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura, Y. and M. Shibano. 1972. Male sterility in A. fistulosum L. I. Cytological and anatomical studies. Abstr. J. Jpn. Soc. Hortic. Sci. Spring meet. p. 180–181.

    Google Scholar 

  • Nuttall, V.W. 1963. The inheritance and possible usefulness of functional male sterility in Solanum melongena L. Can. J. Genet. Cytol. 5:197–199.

    Article  Google Scholar 

  • Ogura, H. 1968. Studies on the new male sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem. Fac. Agric. Kagoshima Univ. 6:39–78.

    Google Scholar 

  • Pacini, E. and L. Viegi. 1995. Total polysaccharide content of developing pollen in two angiosperm species. Grana 34:237–241.

    Article  Google Scholar 

  • Pandolfi, T., E. Pacini, and D.M Calder. 1993. Ontogenesis of monad pollen in Pterostylis plumosa (Orchidaceae Neottioideae). Plant Syst. Evol. 186:175–185.

    Article  Google Scholar 

  • Phatak, S.C. and C.A. Jaworski. 1989. UGAl-MS male-sterile eggplant germplasm. HortScience 24:1050.

    Google Scholar 

  • Phatak, S.C., J. Liu, C.A. Jaworski, and A.F. Sultanbawa. 1991. Functional male sterility in eggplant: Inheritance and linkage to the purple fruit color gene. J. Hered. 82:81–83.

    Article  Google Scholar 

  • Ramanna, M.S. and J.G.Th. Hermsen. 1974. Unilateral ‘eclipse sterility’ in reciprocal crosses between Solanum verrucosum Schlechtd. and diploid S. Tuberosum L. Euphytica 23:417–421.

    Article  Google Scholar 

  • Saito, T., H. Matsunaga, A. Saito, N. Hamato, T. Koga, T. Suzuki. and T. Yoshida. 2009. A novel source of cytoplasmic male sterility and a fertility restoration gene in eggplant (Solanum melongena L.) lines. J. Jpn. Soc. Hortic. Sci. 78:425–430.

    Article  Google Scholar 

  • Sangwan, R.S. and B.S. Sangwan-Norreel. 1987. Biochemical cytology of pollen embryogenesis. Int. Rev. Cytol. 107:221–272.

    Article  Google Scholar 

  • Santos, E.K., M.H.B. Zanettini, and E. Mundstock. 1993. Pollen dimorphism in soybean. Protoplasma 174:74–78.

    Article  Google Scholar 

  • Sax, K. 1935. The effect of temperature on nuclear differentiation in microspore development. J. Arnold Arbor. 19:301–310.

    Google Scholar 

  • Singh, R.J. 2002. Plant Cytogenetics. 2nd ed. CRC Press Inc., Boca Raton, FL, USA.

    Book  Google Scholar 

  • Singh, S.P. and M.H. Hadley. 1961. Pollen abortion in cytoplasmic male sterile sorghum. Crop Sci. 1:430–432.

    Article  Google Scholar 

  • Sunderland, N. and F.M. Wicks. 1971. Embryoid formation in pollen grains of Nicotiana tabacum. J. Exp. Bot. 22:213–226.

    Article  Google Scholar 

  • Yamashita, K., H. Tsukazaki, A. Kojima, T, Ohara, and T. Wako. 2010. Inheritance mode of male sterility in bunching onion (Allium fistulosum L.). Euphytica 173:357–367.

    Article  Google Scholar 

  • Zhu, Q.H., K. Ramm, K.R. Shivakkumar, E.S. Dennis, and N.M. Upadhyaya. 2004. The anther indehiscence1 gene encoding a single MYB domain protein is involved in anther development in rice. Plant Physiol. 135:1514–1525.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Isshiki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.M.R., Hasnunnahar, M., Iwayoshi, M. et al. Pollen degeneration in three functional male-sterile lines of eggplant with the wild Solanum cytoplasms. Hortic. Environ. Biotechnol. 56, 350–357 (2015). https://doi.org/10.1007/s13580-015-0015-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-015-0015-3

Additional key words

Navigation