Skip to main content

Advertisement

Log in

Delivery of microRNA-423-5p by exosome from adipose-derived stem/stromal cells inhibits DVL3 to potentiate autologous fat graft survival through adipogenesis and inflammatory response

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Autologous fat grafting represents a reconstructive technique but is limited by unstable graft retention. Based on existing reports and bioinformatics prediction, we hypothesized that delivering exosomes from human adipose-derived stem/stromal cells (hADSC-Exo) would increase fat graft survival and further explore the mechanism. hADSC-Exo were extracted and identified. An autologous fat grafting model was established using donor and recipient mice, followed by hADSC-Exo treatment. hADSC-Exo promoted the retention of autologous fat grafts in mice, along with increased adipocyte activity, angiogenesis, and decreased inflammation in grafts. Moreover, hADSC-Exo potentiated the adipose differentiation of 3T3-L1 cells, enhanced the angiogenic and migratory capacity of human umbilical vein endothelial cells, and inhibited the inflammation and viability of RAW 264.7 cells. The therapeutic effect of hADSC-Exo on fat grafting was associated with the delivery of microRNA (miR)-423-5p. Deletion of miR-423-5p in Exo impaired the function of hADSC-Exo on fat retention. miR-423-5p bound to DVL3 to suppress DVL3 expression, and DVL3 deletion promoted adipose differentiation of 3T3-L1 cells. In conclusion, our findings further widen the theoretical basis of the clinical application of hADSC-Exo in autologous fat grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All other data supporting the findings of this study are available in the manuscript, as well as from the corresponding authors upon reasonable request.

References

  1. Strong AL, Cederna PS, Rubin JP, Coleman SR, Levi B. The current state of fat grafting: a review of harvesting, processing, and injection techniques. Plast Reconstr Surg. 2015;136(4):897–912. https://doi.org/10.1097/PRS.0000000000001590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Major GS, Simcock JW, Woodfield TBF, Lim KS. Overcoming functional challenges in autologous and engineered fat grafting trends. Trends Biotechnol. 2022;40(1):77–92. https://doi.org/10.1016/j.tibtech.2021.04.006.

    Article  PubMed  CAS  Google Scholar 

  3. Zielins ER, Brett EA, Longaker MT, Wan DC. Autologous fat grafting: the science behind the surgery. Aesthet Surg J. 2016;36(4):488–96. https://doi.org/10.1093/asj/sjw004.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baykara G, Sungur N, Ozer K, Atan O, Caydere M, Kosar PN, et al. Autologous conditioned serum increases fat graft viability more than platelet-rich plasma in a controlled rat model. Plast Reconstr Surg. 2022;149(5):1123–36. https://doi.org/10.1097/PRS.0000000000009029.

    Article  PubMed  CAS  Google Scholar 

  5. Debuc B, Gendron N, Cras A, Rancic J, Philippe A, Cetrulo CL Jr, et al. Improving autologous fat grafting in regenerative surgery through stem cell-assisted lipotransfer. Stem Cell Rev Rep. 2023;19(6):1726–54. https://doi.org/10.1007/s12015-023-10568-4.

    Article  PubMed  CAS  Google Scholar 

  6. Kakagia D, Pallua N. Autologous fat grafting: in search of the optimal technique. Surg Innov. 2014;21(3):327–36. https://doi.org/10.1177/1553350613518846.

    Article  PubMed  Google Scholar 

  7. Zhang Y, Liu T. Adipose-derived stem cells exosome and its potential applications in autologous fat grafting. J Plast Reconstr Aesthet Surg. 2023;76:219–29. https://doi.org/10.1016/j.bjps.2022.10.050.

    Article  PubMed  Google Scholar 

  8. Al-Ghadban S, Bunnell BA. Adipose tissue-derived stem cells: immunomodulatory effects and therapeutic potential. Physiology (Bethesda). 2020;35(2):125–33. https://doi.org/10.1152/physiol.00021.2019.

    Article  PubMed  CAS  Google Scholar 

  9. Jie X, Hu H, Nie B, Zhu L, Jiang H, Liu A. Effects of miR126 expressing adipose-derived stem cells on fat graft survival and angiogenesis. Aesthetic Plast Surg. 2023;47(2):825–32. https://doi.org/10.1007/s00266-022-03077-1.

    Article  PubMed  Google Scholar 

  10. Saadh MJ, Ramirez-Coronel AA, Saini RS, Arias-Gonzales JL, Amin AH, Gavilan JCO, et al. Advances in mesenchymal stem/stromal cell-based therapy and their extracellular vesicles for skin wound healing. Hum Cell. 2023;36(4):1253–64. https://doi.org/10.1007/s13577-023-00904-8.

    Article  PubMed  CAS  Google Scholar 

  11. Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal Stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18091852.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen B, Cai J, Wei Y, Jiang Z, Desjardins HE, Adams AE, et al. Exosomes are comparable to source adipose stem cells in fat graft retention with up-regulating early inflammation and angiogenesis. Plast Reconstr Surg. 2019;144(5):816e-e27. https://doi.org/10.1097/PRS.0000000000006175.

    Article  PubMed  CAS  Google Scholar 

  13. Hong P, Yang H, Wu Y, Li K, Tang Z. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review. Stem Cell Res Ther. 2019;10(1):242. https://doi.org/10.1186/s13287-019-1358-y.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen K, Xiong J, Xu S, Wu M, Xue C, Wu M, et al. Adipose-derived stem cells exosomes improve fat graft survival by promoting prolipogenetic abilities through Wnt/beta-catenin pathway. Stem Cells Int. 2022;2022:5014895. https://doi.org/10.1155/2022/5014895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cottingham CM, Patrick T, Richards MA, Blackburn KD. Tricyclic antipsychotics promote adipogenic gene expression to potentiate preadipocyte differentiation in vitro. Hum Cell. 2020;33(3):502–11. https://doi.org/10.1007/s13577-020-00372-4.

    Article  PubMed  CAS  Google Scholar 

  16. Xu F, Xiang Q, Huang J, Chen Q, Yu N, Long X, et al. Exosomal miR-423-5p mediates the proangiogenic activity of human adipose-derived stem cells by targeting Sufu. Stem Cell Res Ther. 2019;10(1):106. https://doi.org/10.1186/s13287-019-1196-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gillis J, Gebremeskel S, Phipps KD, MacNeil LA, Sinal CJ, Johnston B, et al. Effect of N-acetylcysteine on adipose-derived stem cell and autologous fat graft survival in a mouse model. Plast Reconstr Surg. 2015;136(2):179e-e88. https://doi.org/10.1097/PRS.0000000000001443.

    Article  PubMed  CAS  Google Scholar 

  18. Trzyna A, Banas-Zabczyk A. Adipose-derived stem cells secretome and its potential application in stem cell-free therapy. Biomolecules. 2021. https://doi.org/10.3390/biom11060878.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kang Y, Xu C, Meng L, Dong X, Qi M, Jiang D. Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration. Bioact Mater. 2022;18:26–41. https://doi.org/10.1016/j.bioactmat.2022.02.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Yu H, Yang X, Xiao X, Xu M, Yang Y, Xue C, et al. Human adipose mesenchymal stem cell-derived exosomes protect mice from DSS-induced inflammatory bowel disease by promoting intestinal-stem-cell and epithelial regeneration. Aging Dis. 2021;12(6):1423–37. https://doi.org/10.14336/AD.2021.0601.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhou Y, Zhang XL, Lu ST, Zhang NY, Zhang HJ, Zhang J, et al. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res Ther. 2022;13(1):407. https://doi.org/10.1186/s13287-022-02980-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Abbas DB, Lavin CV, Fahy EJ, Griffin M, Guardino NJ, Nazerali RS, et al. Fat grafts augmented with vitamin E improve volume retention and radiation-induced fibrosis. Aesthet Surg J. 2022;42(8):946–55. https://doi.org/10.1093/asj/sjac066.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sun Y, Xiong X, Wang X. The miR-590-3p/VEGFA axis modulates secretion of VEGFA from adipose-derived stem cells, which acts as a paracrine regulator of human dermal microvascular endothelial cell angiogenesis. Hum Cell. 2020;33(3):479–89. https://doi.org/10.1007/s13577-019-00315-8.

    Article  PubMed  CAS  Google Scholar 

  24. Nie JY, Zhu YZ, Wang JW, Hu X, Wang ZH, Wu S, et al. Preparing adipogenic hydrogel with neo-mechanical isolated adipose-derived extracellular vesicles for adipose tissue engineering. Plast Reconstr Surg. 2021;148(2):212e-e22. https://doi.org/10.1097/PRS.0000000000008186.

    Article  PubMed  CAS  Google Scholar 

  25. Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1221–32.

    Article  PubMed  CAS  Google Scholar 

  26. Lertkiatmongkol P, Liao D, Mei H, Hu Y, Newman PJ. Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr Opin Hematol. 2016;23(3):253–9. https://doi.org/10.1097/MOH.0000000000000239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mashiko T, Yoshimura K. How does fat survive and remodel after grafting? Clin Plast Surg. 2015;42(2):181–90. https://doi.org/10.1016/j.cps.2014.12.008.

    Article  PubMed  Google Scholar 

  28. Li W, Yang Y, Zhang X, Lin Y, Li H, Yao Y, et al. The preliminary study of exosomes derived from thymosin beta 4-treated adipose-derived stem cells in fat grafting. Genes Genom. 2023;45(4):413–27. https://doi.org/10.1007/s13258-022-01329-7.

    Article  CAS  Google Scholar 

  29. Hao X, Guo Y, Wang R, Yu X, He L, Shu M. Exosomes from adipose-derived mesenchymal stem cells promote survival of fat grafts by regulating macrophage polarization via let-7c. Acta Biochim Biophys Sin (Shanghai). 2021;53(4):501–10. https://doi.org/10.1093/abbs/gmab018.

    Article  PubMed  CAS  Google Scholar 

  30. Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol. 2011;12(11):722–34. https://doi.org/10.1038/nrm3198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Alonso-Alonso ML, Garcia-Posadas L, Diebold Y. Extracellular vesicles from human adipose-derived mesenchymal stem cells: a review of common cargos. Stem Cell Rev Rep. 2022;18(3):854–901. https://doi.org/10.1007/s12015-021-10155-5.

    Article  PubMed  CAS  Google Scholar 

  32. Wang J, Ren Q, Hua L, Chen J, Zhang J, Bai H, et al. Comprehensive analysis of differentially expressed mRNA, lncRNA and circRNA and their ceRNA networks in the Longissimus Dorsi muscle of two different pig breeds. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20051107.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhao X, Wang C, Liu M, Meng F, Liu K. LncRNA FENDRR servers as a possible marker of essential hypertension and regulates human umbilical vein endothelial cells dysfunction via miR-423-5p/Nox4 Axis. Int J Gen Med. 2022;15:2529–40. https://doi.org/10.2147/IJGM.S338147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cheng J, Hao J, Jiang X, Ji J, Wu T, Chen X, et al. Ameliorative effects of miR-423-5p against polarization of microglial cells of the M1 phenotype by targeting a NLRP3 inflammasome signaling pathway. Int Immunopharmacol. 2021;99:108006. https://doi.org/10.1016/j.intimp.2021.108006.

    Article  PubMed  CAS  Google Scholar 

  35. Sharma M, Castro-Piedras I, Simmons GE Jr, Pruitt K. Dishevelled: a masterful conductor of complex Wnt signals. Cell Signal. 2018;47:52–64. https://doi.org/10.1016/j.cellsig.2018.03.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Adi N, Perriotte-Olson C, Desouza CV, Ramalingam R, Saraswathi V. Hematopoietic cyclooxygenase-2 deficiency increases adipose tissue inflammation and adiposity in obesity. Obesity (Silver Spring). 2015;23(10):2037–45. https://doi.org/10.1002/oby.21184.

    Article  PubMed  CAS  Google Scholar 

  37. He H, Chen K, Wang F, Zhao L, Wan X, Wang L, et al. miR-204-5p promotes the adipogenic differentiation of human adipose-derived mesenchymal stem cells by modulating DVL3 expression and suppressing Wnt/beta-catenin signaling. Int J Mol Med. 2015;35(6):1587–95. https://doi.org/10.3892/ijmm.2015.2160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thanks to the CAMS Innovation Fund for Medical Sciences (2021-I2M-1-052) for the funding support.

Funding

This study was supported by the CAMS Innovation Fund for Medical Sciences (2021-I2M-1–052).

Author information

Authors and Affiliations

Authors

Contributions

Experiments were conceived and designed by JLZ; experiments were performed by FNZ and YMC; and data was analyzed by XYJ. The article was written by FCL. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Facheng Li.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Ethics approval

The animal experimental protocol has been authorized by the ethics committee of the Chinese Academy of Medical Sciences and Peking Union Medical College and conformed to the Guide to the Care and Use of Experimental Animals.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1843 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Zhao, F., Chai, Y. et al. Delivery of microRNA-423-5p by exosome from adipose-derived stem/stromal cells inhibits DVL3 to potentiate autologous fat graft survival through adipogenesis and inflammatory response. Human Cell 37, 229–244 (2024). https://doi.org/10.1007/s13577-023-01010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-023-01010-5

Keywords

Navigation