Skip to main content
Log in

Tricyclic antipsychotics promote adipogenic gene expression to potentiate preadipocyte differentiation in vitro

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Antipsychotic-induced weight gain is a well-established but poorly understood clinical phenomenon. New mechanistic insights into how antipsychotics modulate adipose physiology are sorely needed, in hopes of either devising a therapeutic intervention to ameliorate weight gain or contributing to improved design of future agents. In this study, we have hypothesized that the weight gain-associated tricyclic antipsychotics clozapine and chlorpromazine directly impact adipose tissue by potentiating adipogenic differentiation of preadipocytes. Utilizing a well-established in vitro model system (3T3-L1 preadipocyte cell line), we demonstrate that, when applied specifically during induction of adipogenic differentiation, both clozapine and chlorpromazine significantly potentiate in vitro adipogenesis, observed as morphological changes and increased intracellular lipid accumulation. These persistent effects, observed at endpoints well after the end of antipsychotic exposure, are accompanied by increased transcript- and protein-level expression of the mature adipocyte marker perilipin-1, as indicated by RT-qPCR and Western blotting, but not by further upregulation of pro-adipogenic transcription factors versus positive controls. Our findings point to a possible physiological mechanism of antipsychotic-induced hyperplasia, with potentiated expression of mature adipocyte markers enhancing the differentiation and maturation of preadipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Clz:

Clozapine

Cpz:

Chlorpromazine

CEBP:

CCAAT-enhancer-binding protein

ORO:

Oil Red O

PPAR:

Peroxisome proliferator-activated receptor

Plpn-1:

Perilipin-1

PI:

Post-induction

RT-qPCR:

Reverse-transcription quantitative (real-time) PCR

UD:

Undifferentiated

References

  1. J.M. Meyer, Pharmacotherapy of psychosis and mania, in: Goodman and Gilman’s The Pharmacological Basis of Therapeutics 13th ed., McGraw-Hill Education, 2018: pp. 279–302.

  2. J.A. Lieberman, R.A. Rosenheck, S.M. Davis, J.K. Hsiao, Effectiveness of antipsychotic drugs in patients with chronic schizophrenia, New Eng J Med. (2005) 15.

  3. Bak M, Fransen A, Janssen J, van Os J, Drukker M. Almost all antipsychotics result in weight gain: a meta-analysis. PLoS ONE. 2014;9:e94112. https://doi.org/10.1371/journal.pone.0094112.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Zhao X, Feng X, Liu X, Deng C, Hu C-H. Berberine alleviates olanzapine-induced adipogenesis via the AMPKα–SREBP pathway in 3T3-L1 cells. Int J Mol Sci. 2016;17:1865. https://doi.org/10.3390/ijms17111865.

    Article  CAS  PubMed Central  Google Scholar 

  5. Yang Z, Yin J-Y, Gong Z-C, Huang Q, Chen H, Zhang W, Zhou H-H, Liu Z-Q. Evidence for an effect of clozapine on the regulation of fat-cell derived factors. Clin Chim Acta. 2009;408:98–104. https://doi.org/10.1016/j.cca.2009.07.021.

    Article  CAS  PubMed  Google Scholar 

  6. Tsubai T, Yoshimi A, Hamada Y, Nakao M, Arima H, Oiso Y, Noda Y. Effects of clozapine on adipokine secretions/productions and lipid droplets in 3T3-L1 adipocytes. J Pharmacol Sci. 2017;133:79–877. https://doi.org/10.1016/j.jphs.2017.01.004.

    Article  CAS  PubMed  Google Scholar 

  7. Chen C-C, Hsu L-W, Huang K-T, Goto S, Chen C-L, Nakano T. Overexpression of Insig-2 inhibits atypical antipsychotic-induced adipogenic differentiation and lipid biosynthesis in adipose-derived stem cells. Sci Rep. 2017;7:1–10. https://doi.org/10.1038/s41598-017-11323-9.

    Article  CAS  Google Scholar 

  8. Sertié AL, Suzuki AM, Sertié RAL, Andreotti S, Lima FB, Passos-Bueno MR, Gattaz WF. Effects of antipsychotics with different weight gain liabilities on human in vitro models of adipose tissue differentiation and metabolism. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:1884–900. https://doi.org/10.1016/j.pnpbp.2011.07.017.

    Article  CAS  PubMed  Google Scholar 

  9. Green H, Kehinde O. An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell. 1975;5:19–27. https://doi.org/10.1016/0092-8674(75)90087-2.

    Article  CAS  PubMed  Google Scholar 

  10. Green H, Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell. 1974;3:127–33. https://doi.org/10.1016/0092-8674(74)90116-0.

    Article  CAS  PubMed  Google Scholar 

  11. Hemmrich K, Gummersbach C, Pallua N, Luckhaus C, Fehsel K. Clozapine enhances differentiation of adipocyte progenitor cells. Mol Psychiatry. 2006;11:980–1. https://doi.org/10.1038/sj.mp.4001892.

    Article  CAS  PubMed  Google Scholar 

  12. Yang L-H, Chen T-M, Yu S-T, Chen Y-H. Olanzapine induces SREBP-1-related adipogenesis in 3T3-L1 cells. Pharmacol Res. 2007;56:202–8. https://doi.org/10.1016/j.phrs.2007.05.007.

    Article  CAS  PubMed  Google Scholar 

  13. Nimura S, Yamaguchi T, Ueda K, Kadokura K, Aiuchi T, Kato R, Obama T, Itabe H. Olanzapine promotes the accumulation of lipid droplets and the expression of multiple perilipins in human adipocytes. Biochem Biophys Res Commun. 2015;467:906–12. https://doi.org/10.1016/j.bbrc.2015.10.045.

    Article  CAS  PubMed  Google Scholar 

  14. Cottingham C, Che P, Zhang W, Wang H, Wang RX, Percival S, Birky T, Zhou L, Jiao K, Wang Q. Diverse arrestin-recruiting and endocytic profiles of tricyclic antipsychotics acting as direct α 2A adrenergic receptor ligands. Neuropharmacology. 2017;116:38–49. https://doi.org/10.1016/j.neuropharm.2016.12.004.

    Article  CAS  PubMed  Google Scholar 

  15. Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006;7:885–96. https://doi.org/10.1038/nrm2066.

    Article  CAS  PubMed  Google Scholar 

  16. Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol. 2011;12:722–34. https://doi.org/10.1038/nrm3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8. https://doi.org/10.1038/nprot.2008.73.

    Article  CAS  PubMed  Google Scholar 

  18. Cottingham C, Chen Y, Jiao K, Wang Q. The antidepressant desipramine is an arrestin-biased ligand at the α 2A -adrenergic receptor driving receptor down-regulation in vitro and in vivo. J Biol Chem. 2011;286:36063–755. https://doi.org/10.1074/jbc.M111.261578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cottingham C, Jones A, Wang Q. Desipramine selectively potentiates norepinephrine-elicited ERK1/2 activation through the α2A adrenergic receptor. Biochem Biophys Res Commun. 2012;420:161–5. https://doi.org/10.1016/j.bbrc.2012.02.135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang QQ, Lane MD. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem. 2012;81:715–36. https://doi.org/10.1146/annurev-biochem-052110-115718.

    Article  CAS  PubMed  Google Scholar 

  21. Brasaemle DL. Thematic review series: Adipocyte Biology The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res. 2007;48:2547–59. https://doi.org/10.1194/jlr.R700014-JLR200.

    Article  CAS  PubMed  Google Scholar 

  22. Lafontan M, Berlan M. Fat cell α2-adrenoceptors: the regulation of fat cell function and lipolysis*. Endocr Rev. 1995;16:716–38. https://doi.org/10.1210/edrv-16-6-716.

    Article  CAS  PubMed  Google Scholar 

  23. Shenoy SK, Lefkowitz RJ. Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem J. 2003;375:503–15. https://doi.org/10.1042/BJ20031076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rajagopal S, Rajagopal K, Lefkowitz RJ. Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov. 2010;9:373–86. https://doi.org/10.1038/nrd3024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Kurt Gibbs (Morehead State University) for advice regarding RT-qPCR assays, Amber Hall (formerly of Morehead State University) for contributions to RT-qPCR data collection, and Qin Wang (University of Alabama at Birmingham) for providing frozen 3T3-L1 stock.

Funding

This work was supported by the National Institutes of Health [grant number P20GM103436].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Cottingham.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. Other ethics approvals are not applicable to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cottingham, C.M., Patrick, T., Richards, M.A. et al. Tricyclic antipsychotics promote adipogenic gene expression to potentiate preadipocyte differentiation in vitro. Human Cell 33, 502–511 (2020). https://doi.org/10.1007/s13577-020-00372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-020-00372-4

Keywords

Navigation