Skip to main content

Advertisement

Log in

The progress in techniques for culturing human limbal epithelial stem cells

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

In vitro culture of human limbal epithelial stem cells (hLESCs) is crucial to cell therapy in the treatment of limbal stem cell deficiency, a potentially vision-threatening disease that is characterized by persistent corneal epithelial defects and corneal epithelium conjunctivalization. Traditionally, hLESCs are cultivated based on either limbal tissue explants or single-cell suspensions in culture media containing xenogenous components, such as fetal bovine serum and murine 3T3 feeder cells. Plastic culture dishes and human amniotic membranes are classical growth substrates used in conventional hLESC culture systems. The past few decades have witnessed considerable progress and innovations in hLESC culture techniques to ensure a higher level of biosafety and lower immunogenicity for further cell treatment, including complete removal of xenogenous components from culture media, the application of human-derived feeder cells, and the development of novel scaffolds. Three-dimensional artificial niches and three-dimensional culture techniques have also been established to simulate the real microenvironment of limbal crypts for better cell outgrowth and proliferation. All these progresses ensure that in vitro cultured hLESCs are more adaptable to translational stem cell therapy for limbal stem cell deficiency.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1990–2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5:e1221–34. https://doi.org/10.1016/s2214-109x(17)30393-5.

    Article  Google Scholar 

  2. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–8. https://doi.org/10.1136/bjophthalmol-2011-300539.

    Article  Google Scholar 

  3. Potten CS, Loeffler M. Stem cells attributes, cycles, spirals, pitfalls and uncertainties lessons for and from the Crypt. Stem cells. 1990;110:1001–20. https://doi.org/10.1242/dev.110.4.1001.

    Article  CAS  Google Scholar 

  4. Schermer A, Galvin S, Sun T. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;103:49–62. https://doi.org/10.1083/jcb.103.1.49.

    Article  CAS  Google Scholar 

  5. Davanger M, Evensen A. Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature. 1971;229:560–1. https://doi.org/10.1038/229560a0.

    Article  CAS  Google Scholar 

  6. Dziasko MA, Tuft SJ, Daniels JT. Limbal melanocytes support limbal epithelial stem cells in 2D and 3D microenvironments. Exp Eye Res. 2015;138:70–9. https://doi.org/10.1016/j.exer.2015.06.026.

    Article  CAS  Google Scholar 

  7. Nakatsu MN, González S, Mei H, Deng SX. Human limbal mesenchymal cells support the growth of human corneal epithelial stem progenitor cells. IOVS. 2014;55:6953–9. https://doi.org/10.1167/iovs.14-14999.

    Article  CAS  Google Scholar 

  8. Li W, Hayashida Y, Chen YT, Tseng SC. Niche regulation of corneal epithelial stem cells at the limbus. Cell Res. 2007;17:26–36. https://doi.org/10.1038/sj.cr.7310137.

    Article  CAS  Google Scholar 

  9. Lutolf MP, Blau HM. Artificial stem cell niches. Adv Mater. 2009;21:3255–68. https://doi.org/10.1002/adma.200802582.

    Article  CAS  Google Scholar 

  10. Polisetti N, Zenkel M, Menzel-Severing J, Kruse FE, Schlotzer-Schrehardt U. Cell adhesion molecules and stem cell-niche-interactions in the limbal stem cell niche. Stem Cells. 2016;34:203–19. https://doi.org/10.1002/stem.2191.

    Article  CAS  Google Scholar 

  11. Polisetti N, Sharaf L, Martin G, Schlunck G, Reinhard T. P-cadherin is expressed by epithelial progenitor cells and melanocytes in the human corneal limbus. Cells. 2022;11:1975. https://doi.org/10.3390/cells11121975.

    Article  CAS  Google Scholar 

  12. Zhao S, Wan X, Dai Y, Gong L, Le Q. WNT16B enhances the proliferation and self-renewal of limbal epithelial cells via CXCR4/MEK/ERK signaling. Stem Cell Rep. 2022;17:864–78. https://doi.org/10.1016/j.stemcr.2022.03.001.

    Article  CAS  Google Scholar 

  13. Deng SX, Kruse F, Gomes JAP, Chan CC, Daya S, Dana R, et al. Global consensus on the management of limbal stem cell deficiency. Cornea. 2020;39:1291–302. https://doi.org/10.1097/ICO.0000000000002358.

    Article  Google Scholar 

  14. Friend J, Kinoshita S, Thoft RA, Eliason JA. Corneal epithelial cell cultures on stromal carriers. Invest Ophthalmol Vis Sci. 1982;23:41–9.

    CAS  Google Scholar 

  15. Ghoubay-Benallaoua D, Basli E, Goldschmidt P, Pecha F, Chaumeil C, Laroche L, et al. Human epithelial cell cultures from superficial limbal explants. Mol Vis. 2011;17:341–54.

    CAS  Google Scholar 

  16. Hernaez-Moya R, Gonzalez S, Urkaregi A, Pijoan JI, Deng SX, Andollo N. Expansion of human limbal epithelial stem/progenitor cells using different human sera: a multivariate statistical analysis. Int J Mol Sci. 2020;21:6132. https://doi.org/10.3390/ijms21176132.

    Article  CAS  Google Scholar 

  17. Mei H, Gonzalez S, Nakatsu MN, Baclagon ER, Lopes VS, Williams DS, et al. A three-dimensional culture method to expand limbal stem/progenitor cells. Tissue Eng C Methods. 2014;20:393–400. https://doi.org/10.1089/ten.TEC.2013.0246.

    Article  Google Scholar 

  18. Lopez-Paniagua M, Nieto-Miguel T, de la Mata A, Dziasko M, Galindo S, Rey E, et al. Comparison of functional limbal epithelial stem cell isolation methods. Exp Eye Res. 2016;146:83–94. https://doi.org/10.1016/j.exer.2015.12.002.

    Article  CAS  Google Scholar 

  19. Mei H, Gonzalez S, Nakatsu MN, Baclagon ER, Chen FV, Deng SX. Human adipose-derived stem cells support the growth of limbal stem/progenitor cells. PLoS ONE. 2017;12: e0186238. https://doi.org/10.1371/journal.pone.0186238.

    Article  CAS  Google Scholar 

  20. Gürdal M, Barut Selver O, Baysal K, Durak I. Comparison of culture media indicates a role for autologous serum in enhancing phenotypic preservation of rabbit limbal stem cells in explant culture. Cytotechnology. 2018;70:687–700. https://doi.org/10.1007/s10616-017-0171-7.

    Article  CAS  Google Scholar 

  21. Nam SM, Maeng YS, Kim EK, Seo KY, Lew H. Ex vivo expansion of human limbal epithelial cells using human placenta-derived and umbilical cord-derived mesenchymal stem cells. Stem Cells Int. 2017;2017:4206187. https://doi.org/10.1155/2017/4206187.

    Article  CAS  Google Scholar 

  22. Li Y, Inoue T, Takamatsu F, Maeda N, Ohashi Y, Nishida K. Development of genetically modified eliminable human dermal fibroblast feeder cells for ocular surface regeneration medicine. Invest Ophthalmol Vis Sci. 2013;54:7522–31. https://doi.org/10.1167/iovs.13-12870.

    Article  CAS  Google Scholar 

  23. Li Y, Inoue T, Takamatsu F, Kobayashi T, Shiraishi A, Maeda N, et al. Differences between niche cells and limbal stromal cells in maintenance of corneal limbal stem cells. Invest Ophthalmol Vis Sci. 2014;55:1453–62. https://doi.org/10.1167/iovs.13-13698.

    Article  CAS  Google Scholar 

  24. Mi S, Chen B, Wright B, Connon CJ. Ex vivo construction of an artificial ocular surface by combination of corneal limbal epithelial cells and a compressed collagen scaffold containing keratocytes. Tissue Eng. 2010;16:2091–100. https://doi.org/10.1089/ten.tea.2009.0748.

    Article  CAS  Google Scholar 

  25. Tseng SCG, He H, Zhang S, Chen SY. Niche regulation of limbal epithelial stem cells: relationship between inflammation and regeneration. Ocul Surf. 2016;14:100–12. https://doi.org/10.1016/j.jtos.2015.12.002.

    Article  Google Scholar 

  26. Boroumand N, Nosrati Tirkani A, Javid D, Hasani A, Taherzadeh D, Hosseinzadeh A, et al. Novelty in limbal stem cell culture and cell senescence. Exp Eye Res. 2019;181:294–301. https://doi.org/10.1016/j.exer.2019.02.015.

    Article  CAS  Google Scholar 

  27. Gonzalez S, Chen L, Deng SX. Comparative study of xenobiotic-free media for the cultivation of human limbal epithelial stem/progenitor cells. Tissue Eng C Methods. 2017;23:219–27. https://doi.org/10.1089/ten.tec.2016.0388.

    Article  CAS  Google Scholar 

  28. Bath C, Yang S, Muttuvelu D, Fink T, Emmersen J, Vorum H, et al. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation. Stem Cell Res. 2013;10:349–60. https://doi.org/10.1016/j.scr.2013.01.004.

    Article  CAS  Google Scholar 

  29. Haagdorens M, Cepla V, Melsbach E, Koivusalo L, Skottman H, Griffith M, et al. In vitro cultivation of limbal epithelial stem cells on surface-modified crosslinked collagen scaffolds. Stem Cells Int. 2019;2019:1–18. https://doi.org/10.1155/2019/7867613.

    Article  CAS  Google Scholar 

  30. Hosseinkhani M, Mehrabani D, Karimfar MH, Bakhtiyari S, Manafi A, Shirazi R. Tissue engineered scaffolds in regenerative medicine. World J Plast Surg. 2014;3:3–7.

    Google Scholar 

  31. Levis HJ, Brown RA, Daniels JT. Plastic compressed collagen as a biomimetic substrate for human limbal epithelial cell culture. Biomaterials. 2010;31:7726–37. https://doi.org/10.1016/j.biomaterials.2010.07.012.

    Article  CAS  Google Scholar 

  32. Levis HJ, Massie I, Dziasko MA, Kaasi A, Daniels JT. Rapid tissue engineering of biomimetic human corneal limbal crypts with 3D niche architecture. Biomaterials. 2013;34:8860–8. https://doi.org/10.1016/j.biomaterials.2013.08.002.

    Article  CAS  Google Scholar 

  33. Massie I, Kureshi AK, Schrader S, Shortt AJ, Daniels JT. Optimization of optical and mechanical properties of real architecture for 3-dimensional tissue equivalents: towards treatment of limbal epithelial stem cell deficiency. Acta Biomater. 2015;24:241–50. https://doi.org/10.1016/j.actbio.2015.06.007.

    Article  Google Scholar 

  34. Jangamreddy JR, Haagdorens MKC, Islam MM, Lewis P, Samanta A, Fagerholm P, et al. Corrigendum to “short peptide analogs as alternatives to collagen in pro-regenerative corneal implants.” Acta Biomater. 2019;88:556–7. https://doi.org/10.1016/j.actbio.2019.01.046.

    Article  Google Scholar 

  35. Ebato B, Friend J, Thofr RA. Comparison of central and peripheral human corneal epithelium in tissue culture. Invest Ophthalmol Vis Sci. 1987;28:1450–6.

    CAS  Google Scholar 

  36. Yu M, Bojic S, Figueiredo GS, Rooney P, de Havilland J, Dickinson A, et al. An important role for adenine, cholera toxin, hydrocortisone and triiodothyronine in the proliferation, self-renewal and differentiation of limbal stem cells in vitro. Exp Eye Res. 2016;152:113–22. https://doi.org/10.1016/j.exer.2016.09.008.

    Article  CAS  Google Scholar 

  37. Brejchova K, Trosan P, Studeny P, Skalicka P, Utheim TP, Bednar J, et al. Characterization and comparison of human limbal explant cultures grown under defined and xeno-free conditions. Exp Eye Res. 2018;176:20–8. https://doi.org/10.1016/j.exer.2018.06.019.

    Article  CAS  Google Scholar 

  38. Kruse FE, Tseng SCG. Growth factors modulate clonal growth and differentiation of cultured rabbit limbal and corneal epithelium. Invest Ophthalmol Vis Sci. 1993;34:1963–76.

    CAS  Google Scholar 

  39. King CD, Kauker ML, Cardoso SS. Control of cell division in the cornea of rats. III. Mitogenic effect of isoproterenol and theophylline. Proc Soc Exp Biol Med. 1975;149:840–4. https://doi.org/10.3181/00379727-149-38910.

    Article  CAS  Google Scholar 

  40. Ghoubay-Benallaoua D, Pecha F, Goldschmidt P, Fialaire-Legendre A, Chaumeil C, Laroche L, et al. Effects of isoproterenol and cholera toxin on human limbal epithelial cell cultures. Curr Eye Res. 2012;37:644–53. https://doi.org/10.3109/02713683.2012.669510.

    Article  CAS  Google Scholar 

  41. Ekpo P, Inthasin N, Matamnan S, Wongprompitak P, Wattanapanitch M, Boonwong C, et al. Characterization of limbal explant sites: optimization of stem cell outgrowth in vitro culture. PLoS ONE. 2020;15: e0233075. https://doi.org/10.1371/journal.pone.0233075.

    Article  CAS  Google Scholar 

  42. Ghoubay-Benallaoua D, de Sousa C, Martos R, Latour G, Schanne-Klein MC, Dupin E, et al. Easy xeno-free and feeder-free method for isolating and growing limbal stromal and epithelial stem cells of the human cornea. PLoS ONE. 2017;12: e0188398. https://doi.org/10.1371/journal.pone.0188398.

    Article  CAS  Google Scholar 

  43. Chen D, Qu Y, Hua X, Zhang L, Liu Z, Pflugfelder SC, et al. A hyaluronan hydrogel scaffold-based xeno-free culture system for ex vivo expansion of human corneal epithelial stem cells. Eye (Lond). 2017;31:962–71. https://doi.org/10.1038/eye.2017.8.

    Article  CAS  Google Scholar 

  44. Sharma SM, Fuchsluger T, Ahmad S, Katikireddy KR, Armant M, Dana R, et al. Comparative analysis of human-derived feeder layers with 3T3 fibroblasts for the ex vivo expansion of human limbal and oral epithelium. Stem Cell Rev Rep. 2012;8:696–705. https://doi.org/10.1007/s12015-011-9319-6.

    Article  CAS  Google Scholar 

  45. Notara PDM, Bullett N, Daniels JT, Haddow DB, MacNeil S. Cultivation and characterization of limbal epithelial stem cells on contact lenses with a feeder layer: toward the treatment of limbal stem cell deficiency. Cornea. 2014;33:65–71.

    Article  Google Scholar 

  46. Le-Bel G, Cortez GS, Guerin LP, Bisson F, Germain L, Guerin SL. Irradiated human fibroblasts as a substitute feeder layer to irradiated mouse 3T3 for the culture of human corneal epithelial cells: impact on the stability of the transcription factors Sp1 and NFI. Int J Mol Sci. 2019;20:6296. https://doi.org/10.3390/ijms20246296.

    Article  CAS  Google Scholar 

  47. Kureshi AK, Dziasko M, Funderburgh JL, Daniels JT. Human corneal stromal stem cells support limbal epithelial cells cultured on RAFT tissue equivalents. Sci Rep. 2015;5:16186. https://doi.org/10.1038/srep16186.

    Article  CAS  Google Scholar 

  48. Notara M, Shortt AJ, Galatowicz G, Calder V, Daniels JT. IL6 and the human limbal stem cell niche: a mediator of epithelial-stromal interaction. Stem Cell Res. 2010;5:188–200. https://doi.org/10.1016/j.scr.2010.07.002.

    Article  CAS  Google Scholar 

  49. Nakatsu MN, González S, Mei H, Deng SX. Human-derived feeder fibroblasts for the culture of epithelial cells for clinical use. Regen Med. 2016;11:529–43. https://doi.org/10.2217/rme-2016-0039.

    Article  CAS  Google Scholar 

  50. O’Callaghan AR, Shortt AJ, Lewis MP, Daniels JT. Human oral mucosal fibroblasts from limbal stem cell deficient patients as an autologous feeder layer for epithelial cell culture. Curr Eye Res. 2022;47:1106–15. https://doi.org/10.1080/02713683.2022.2071944.

    Article  CAS  Google Scholar 

  51. Scafetta G, Tricoli E, Siciliano C, Napoletano C, Puca R, Vingolo EM, et al. Suitability of human Tenon’s fibroblasts as feeder cells for culturing human limbal epithelial stem cells. Stem Cell Rev Rep. 2013;9:847–57. https://doi.org/10.1007/s12015-013-9451-6.

    Article  CAS  Google Scholar 

  52. Omoto M, Miyashita H, Shimmura S, Higa K, Kawakita T, Yoshida S, et al. The use of human mesenchymal stem cell-derived feeder cells for the cultivation of transplantable epithelial sheets. Invest Ophthalmol Vis Sci. 2009;50:2109–15. https://doi.org/10.1167/iovs.08-2262.

    Article  Google Scholar 

  53. Gonzalez S, Mei H, Nakatsu MN, Baclagon ER, Deng SX. A 3D culture system enhances the ability of human bone marrow stromal cells to support the growth of limbal stem/progenitor cells. Stem Cell Res. 2016;16:358–64. https://doi.org/10.1016/j.scr.2016.02.018.

    Article  CAS  Google Scholar 

  54. Wang HX, Gao XW, Ren B, Cai Y, Li WJ, Yang YL, et al. Comparative analysis of different feeder layers with 3T3 fibroblasts for culturing rabbits limbal stem cells. Int J Ophthalmol. 2017;10:1021–7. https://doi.org/10.18240/ijo.2017.07.01.

    Article  Google Scholar 

  55. Shirzadeh E, Heidari Keshel S, Ezzatizadeh V, Jabbehdari S, Baradaran-Rafii A. Unrestricted somatic stem cells, as a novel feeder layer: ex vivo culture of human limbal stem cells. J Cell Biochem. 2018;119:2666–78. https://doi.org/10.1002/jcb.26434.

    Article  CAS  Google Scholar 

  56. Ang LP, Jain P, Phan TT, Reza HM. Human umbilical cord lining cells as novel feeder layer for ex vivo cultivation of limbal epithelial cells. Invest Ophthalmol Vis Sci. 2015;56:4697–704. https://doi.org/10.1167/iovs.14-15965.

    Article  CAS  Google Scholar 

  57. Albert R, Vereb Z, Csomos K, Moe MC, Johnsen EO, Olstad OK, et al. Cultivation and characterization of cornea limbal epithelial stem cells on lens capsule in animal material-free medium. PLoS ONE. 2012;7(e47187): e47187. https://doi.org/10.1371/journal.pone.0047187.

    Article  CAS  Google Scholar 

  58. Yokoo SYS, Sakimoto T. Ocular surface reconstruction with the autologous conjunctival epithelium and establishment of a feeder-free and serum-free culture system. Cornea. 2018;37:S39–41.

    Article  Google Scholar 

  59. Baharvand H, Heidari M, Ebrahimi M, Valadbeigi T, Salekdeh GH. Proteomic analysis of epithelium-denuded human amniotic membrane as a limbal stem cell niche. Mol Vis. 2007;13:1711–21.

    CAS  Google Scholar 

  60. Chen SY, Han B, Zhu YT, Mahabole M, Huang J, Beebe DC, et al. HC-HA/PTX3 purified from amniotic membrane promotes BMP signaling in limbal niche cells to maintain quiescence of limbal epithelial progenitor/stem cells. Stem Cells. 2015;33:3341–55. https://doi.org/10.1002/stem.2091.

    Article  CAS  Google Scholar 

  61. Riau AK, Beuerman RW, Lim LS, Mehta JS. Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials. 2010;31:216–25. https://doi.org/10.1016/j.biomaterials.2009.09.034.

    Article  CAS  Google Scholar 

  62. Hernandez Galindo EE, Theiss C, Steuhl KP, Meller D. Expression of Delta Np63 in response to phorbol ester in human limbal epithelial cells expanded on intact human amniotic membrane. Invest Ophthalmol Vis Sci. 2003;44:2959–65. https://doi.org/10.1167/iovs.02-0776.

    Article  Google Scholar 

  63. Zhang T, Yam GH, Riau AK, Poh R, Allen JC, Peh GS, et al. The effect of amniotic membrane de-epithelialization method on its biological properties and ability to promote limbal epithelial cell culture. Invest Ophthalmol Vis Sci. 2013;54:3072–81. https://doi.org/10.1167/iovs.12-10805.

    Article  CAS  Google Scholar 

  64. Saghizadeh M, Winkler MA, Kramerov AA, Hemmati DM, Ghiam CA, Dimitrijevich SD, et al. A simple alkaline method for decellularizing human amniotic membrane for cell culture. PLoS ONE. 2013;8: e79632. https://doi.org/10.1371/journal.pone.0079632.

    Article  CAS  Google Scholar 

  65. Lee S, Tseng SCG. Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol. 1997;123:303–12. https://doi.org/10.1016/s0002-9394(14)70125-4.

    Article  CAS  Google Scholar 

  66. Rodriguez-Ares MT, Lopez-Valladares MJ, Tourino R, Vieites B, Gude F, Silva MT, et al. Effects of lyophilization on human amniotic membrane. Acta Ophthalmol. 2009;87:396–403. https://doi.org/10.1111/j.1755-3768.2008.01261.x.

    Article  Google Scholar 

  67. Russo A, Bonci P, Bonci P. The effects of different preservation processes on the total protein and growth factor content in a new biological product developed from human amniotic membrane. Cell Tissue Bank. 2012;13:353–61. https://doi.org/10.1007/s10561-011-9261-5.

    Article  CAS  Google Scholar 

  68. Thomasen H, Pauklin M, Steuhl KP, Meller D. Comparison of cryopreserved and air-dried human amniotic membrane for ophthalmologic applications. Graefes Arch Clin Exp Ophthalmol. 2009;247:1691–700. https://doi.org/10.1007/s00417-009-1162-y.

    Article  Google Scholar 

  69. Nakamura T, Sekiyama E, Takaoka M, Bentley AJ, Yokoi N, Fullwood NJ, et al. The use of trehalose-treated freeze-dried amniotic membrane for ocular surface reconstruction. Biomaterials. 2008;29:3729–37. https://doi.org/10.1016/j.biomaterials.2008.05.023.

    Article  CAS  Google Scholar 

  70. Crowe JH, Crowe LM, Oliver AE, Tsvetkova N, Wolkers W, Tablin F. The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology. 2001;43:89–105. https://doi.org/10.1006/cryo.2001.2353.

    Article  CAS  Google Scholar 

  71. Lai JY. Photo-cross-linking of amniotic membranes for limbal epithelial cell cultivation. Mater Sci Eng C Mater Biol Appl. 2014;45:313–9. https://doi.org/10.1016/j.msec.2014.09.001.

    Article  CAS  Google Scholar 

  72. Figueiredo GS, Bojic S, Rooney P, Wilshaw SP, Connon CJ, Gouveia RM, et al. Gamma-irradiated human amniotic membrane decellularised with sodium dodecyl sulfate is a more efficient substrate for the ex vivo expansion of limbal stem cells. Acta Biomater. 2017;61:124–33. https://doi.org/10.1016/j.actbio.2017.07.041.

    Article  CAS  Google Scholar 

  73. Ma DH, Lai JY, Cheng HY, Tsai CC, Yeh LK. Carbodiimide cross-linked amniotic membranes for cultivation of limbal epithelial cells. Biomaterials. 2010;31:6647–58. https://doi.org/10.1016/j.biomaterials.2010.05.034.

    Article  CAS  Google Scholar 

  74. Lai JY, Lue SJ, Cheng HY, Ma DH. Effect of matrix nanostructure on the functionality of carbodiimide cross-linked amniotic membranes as limbal epithelial cell scaffolds. J Biomed Nanotechnol. 2013;9:2048–62. https://doi.org/10.1166/jbn.2013.1734.

    Article  CAS  Google Scholar 

  75. Lai JY, Wang PR, Luo LJ, Chen ST. Stabilization of collagen nanofibers with L-lysine improves the ability of carbodiimide cross-linked amniotic membranes to preserve limbal epithelial progenitor cells. Int J Nanomedicine. 2014;9:5117–30. https://doi.org/10.2147/IJN.S69689.

    Article  CAS  Google Scholar 

  76. Lai JY, Ma DH. Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics. Int J Nanomedicine. 2013;8:4157–68. https://doi.org/10.2147/IJN.S52731.

    Article  CAS  Google Scholar 

  77. Sekar S, Sasirekha K, Krishnakumar S, Sastry TP. A novel cross-linked human amniotic membrane for corneal implantations. Proc Inst Mech Eng H. 2013;227:221–8. https://doi.org/10.1177/0954411912472423.

    Article  CAS  Google Scholar 

  78. Chau DY, Brown SV, Mather ML, Hutter V, Tint NL, Dua HS, et al. Tissue transglutaminase (TG-2) modified amniotic membrane: a novel scaffold for biomedical applications. Biomed Mater. 2012;7: 045011. https://doi.org/10.1088/1748-6041/7/4/045011.

    Article  CAS  Google Scholar 

  79. Zhou Z, Long D, Hsu CC, Liu H, Chen L, Slavin B, et al. Nanofiber-reinforced decellularized amniotic membrane improves limbal stem cell transplantation in a rabbit model of corneal epithelial defect. Acta Biomater. 2019;97:310–20. https://doi.org/10.1016/j.actbio.2019.08.027.

    Article  CAS  Google Scholar 

  80. Zafar M, Najeeb S, Khurshid Z, Vazirzadeh M, Zohaib S, Najeeb B, et al. Potential of electrospun nanofibers for biomedical and dental applications. Materials (Basel). 2016;9:73. https://doi.org/10.3390/ma9020073.

    Article  CAS  Google Scholar 

  81. Mi S, Connon CJ. The formation of a tissue-engineered cornea using plastically compressed collagen scaffolds and limbal stem cells. Methods Mol Biol. 2013;1014:143–55. https://doi.org/10.1007/978-1-62703-432-6_9.

    Article  CAS  Google Scholar 

  82. de la Mata A, Mateos-Timoneda MA, Nieto-Miguel T, Galindo S, Lopez-Paniagua M, Planell JA, et al. Poly-l/dl-lactic acid films functionalized with collagen IV as carrier substrata for corneal epithelial stem cells. Colloids Surf B Biointerfaces. 2019;177:121–9. https://doi.org/10.1016/j.colsurfb.2019.01.054.

    Article  CAS  Google Scholar 

  83. Takezawa T, Ozaki K, Nitani A, Takabayashi C, Shimo-Oka T. Collagen vitrigel: a novel scaffold that can facilitate a three-dimensional culture for reconstructing organoids. Cell Transplant. 2004;13:463–73. https://doi.org/10.3727/000000004783983882.

    Article  Google Scholar 

  84. McIntosh Ambrose W, Salahuddin A, So S, Ng S, Ponce Marquez S, Takezawa T, et al. Collagen Vitrigel membranes for the in vitro reconstruction of separate corneal epithelial, stromal, and endothelial cell layers. J Biomed Mater Res B Appl Biomater. 2009;90:818–31. https://doi.org/10.1002/jbm.b.31351.

    Article  CAS  Google Scholar 

  85. Tidu A, Ghoubay-Benallaoua D, Teulon C, Asnacios S, Grieve K, Portier F, et al. Highly concentrated collagen solutions leading to transparent scaffolds of controlled three-dimensional organizations for corneal epithelial cell colonization. Biomater Sci. 2018;6:1492–502. https://doi.org/10.1039/c7bm01163f.

    Article  CAS  Google Scholar 

  86. Knutsson KA, Matuska S, Rama P. Autologous cultivated limbal stem cell transplantation after failed previous limbal graft. Eur J Ophthalmol. 2017;27:e137–9. https://doi.org/10.5301/ejo.5001003.

    Article  Google Scholar 

  87. Rama P, Bonini S, Lambiase A, Golisano O, Paterna P, De Luca M, et al. Autologous fibrin-cultures limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation. 2001;72:1478–85. https://doi.org/10.1097/00007890-200111150-00002.

    Article  CAS  Google Scholar 

  88. Sheth R, Neale MH, Shortt AJ, Massie I, Vernon AJ, Daniels JT. Culture and characterization of oral mucosal epithelial cells on a fibrin gel for ocular surface reconstruction. Curr Eye Res. 2015;40:1077–87. https://doi.org/10.3109/02713683.2014.978477.

    Article  CAS  Google Scholar 

  89. Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part II: platelet-related biologic features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:e45–50. https://doi.org/10.1016/j.tripleo.2005.07.009.

    Article  Google Scholar 

  90. Di Girolamo N, Bosch M, Zamora K, Coroneo MT, Wakefield D, Watson SL. A contact lens-based technique for expansion and transplantation of autologous epithelial progenitors for ocular surface reconstruction. Transplantation. 2009;87:1571–8. https://doi.org/10.1097/TP.0b013e3181a4bbf2.

    Article  Google Scholar 

  91. Deshpande P, Notara M, Bullett N, Daniels JT, Haddow DB, MacNeil S. Development of a surface-modified contact lens for the transfer of cultured limbal epithelial cells to the cornea for ocular surface diseases. Tissue Eng A. 2009;15:2889–904. https://doi.org/10.1089/ten.tea.2008.0528.

    Article  CAS  Google Scholar 

  92. Brown KD, Low S, Mariappan I, Abberton KM, Short R, Zhang H, et al. Plasma polymer-coated contact lenses for the culture and transfer of corneal epithelial cells in the treatment of limbal stem cell deficiency. Tissue Eng A. 2014;20:646–55. https://doi.org/10.1089/ten.TEA.2013.0089.

    Article  CAS  Google Scholar 

  93. Zhang H, Brown KD, Lowe SP, Liu GS, Steele D, Abberton K, et al. Acrylic acid surface-modified contact lens for the culture of limbal stem cells. Tissue Eng A. 2014;20:1593–602. https://doi.org/10.1089/ten.TEA.2013.0320.

    Article  CAS  Google Scholar 

  94. Galal A, Perez-Santonja JJ, Rodriguez-Prats JL, Abad M, Alio J. Human anterior lens capsule as a biologic substrate for the ex vivo expansion of limbal stem cells in ocular surface reconstruction. Cornea. 2007;26:473–8. https://doi.org/10.1097/ICO.0b013e318033bd0f.

    Article  Google Scholar 

  95. Tseng SCG. HC-HA/PTX3 purified from amniotic membrane as novel regenerative matrix: insight into relationship between inflammation and regeneration. Invest Ophthalmol Vis Sci. 2016. https://doi.org/10.1167/iovs.15-17637.

    Article  Google Scholar 

  96. Collins MN, Birkinshaw C. Hyaluronic acid based scaffolds for tissue engineering: a review. Carbohydr Polym. 2013;92:1262–79. https://doi.org/10.1016/j.carbpol.2012.10.028.

    Article  CAS  Google Scholar 

  97. Fiorica C, Senior RA, Pitarresi G, Palumbo FS, Giammona G, Deshpande P, et al. Biocompatible hydrogels based on hyaluronic acid cross-linked with a polyaspartamide derivative as delivery systems for epithelial limbal cells. Int J Pharm. 2011;414:104–11. https://doi.org/10.1016/j.ijpharm.2011.05.002.

    Article  CAS  Google Scholar 

  98. Chirila T, Barnard Z, Zainuddin Harkin DG, Schwab IR, Hirst L. Bombyx mori silk fibroin membranes as potential substrata for epithelial constructs used in the management of ocular surface disorders. Tissue Eng A. 2008;14:1203–11. https://doi.org/10.1089/ten.tea.2007.0224.

    Article  CAS  Google Scholar 

  99. Bray LJ, George KA, Ainscough SL, Hutmacher DW, Chirila TV, Harkin DG. Human corneal epithelial equivalents constructed on Bombyx mori silk fibroin membranes. Biomaterials. 2011;32:5086–91. https://doi.org/10.1016/j.biomaterials.2011.03.068.

    Article  CAS  Google Scholar 

  100. Higa K, Takeshima N, Moro F, Kawakita T, Kawashima M, Demura M, et al. Porous silk fibroin film as a transparent carrier for cultivated corneal epithelial sheets. J Biomater Sci Polym Ed. 2011;22:2261–76. https://doi.org/10.1163/092050610X538218.

    Article  CAS  Google Scholar 

  101. Suzuki S, Dawson RA, Chirila TV, Shadforth AM, Hogerheyde TA, Edwards GA, et al. Treatment of silk fibroin with poly (ethylene glycol) for the enhancement of corneal epithelial cell growth. J Funct Biomater. 2015;6:345–66. https://doi.org/10.3390/jfb6020345.

    Article  CAS  Google Scholar 

  102. Grolik M, Szczubialka K, Wowra B, Dobrowolski D, Orzechowska-Wylegala B, Wylegala E, et al. Hydrogel membranes based on genipin-cross-linked chitosan blends for corneal epithelium tissue engineering. J Mater Sci Mater Med. 2012;23:1991–2000. https://doi.org/10.1007/s10856-012-4666-7.

    Article  CAS  Google Scholar 

  103. de la Mata A, Nieto-Miguel T, Lopez-Paniagua M, Galindo S, Aguilar MR, Garcia-Fernandez L, et al. Chitosan-gelatin biopolymers as carrier substrata for limbal epithelial stem cells. J Mater Sci Mater Med. 2013;24:2819–29. https://doi.org/10.1007/s10856-013-5013-3.

    Article  CAS  Google Scholar 

  104. Xu W, Liu K, Li T, Zhang W, Dong Y, Lv J, et al. An in situ hydrogel based on carboxymethyl chitosan and sodium alginate dialdehyde for corneal wound healing after alkali burn. J Biomed Mater Res A. 2019;107:742–54. https://doi.org/10.1002/jbm.a.36589.

    Article  CAS  Google Scholar 

  105. Nakajima R, Kobayashi T, Moriya N, Mizutani M, Kan K, Nozaki T, et al. A novel closed cell culture device for fabrication of corneal epithelial cell sheets. J Tissue Eng Regen Med. 2012;9:1259–67. https://doi.org/10.1002/term.1639.

    Article  CAS  Google Scholar 

  106. Nam E, Fujita N, Morita M, Tsuzuki K, Lin HY, Chung CS, et al. Comparison of the canine corneal epithelial cell sheets cultivated from limbal stem cells on canine amniotic membrane, atelocollagen gel, and temperature-responsive culture dish. Vet Ophthalmol. 2015;18:317–25. https://doi.org/10.1111/vop.12241.

    Article  CAS  Google Scholar 

  107. Kong B, Mi S. Electrospun scaffolds for corneal tissue engineering: a review. Materials (Basel). 2016;9:614. https://doi.org/10.3390/ma9080614.

    Article  CAS  Google Scholar 

  108. Tominac Trcin M, Zdraveva E, Dolenec T, Vrgoc Zimic I, Bujic Mihica M, Batarilo I, et al. Poly (epsilon-caprolactone) titanium dioxide and cefuroxime antimicrobial scaffolds for cultivation of human limbal stem cells. Polymers (Basel). 2020;12:1758. https://doi.org/10.3390/polym12081758.

    Article  CAS  Google Scholar 

  109. Tominac Trcin M, Dekaris I, Mijovic B, Bujic M, Zdraveva E, Dolenec T, et al. Synthetic vs natural scaffolds for human limbal stem cells. Croat Med J. 2015;56:246–56. https://doi.org/10.3325/cmj.2015.56.246.

    Article  CAS  Google Scholar 

  110. Mason SL, Stewart RM, Sheridan CM, Keshtkar F, Rooney P, Austin E, et al. Yield and viability of human limbal stem cells from fresh and stored tissue. Invest Ophthalmol Vis Sci. 2016;57:3708–13. https://doi.org/10.1167/iovs.16-19354.

    Article  CAS  Google Scholar 

  111. Kethiri AR, Basu S, Shukla S, Sangwan VS, Singh V. Optimizing the role of limbal explant size and source in determining the outcomes of limbal transplantation: an in vitro study. PLoS ONE. 2017;12: e0185623. https://doi.org/10.1371/journal.pone.0185623.

    Article  CAS  Google Scholar 

  112. Hynds RE, Bonfanti P, Janes SM. Regenerating human epithelia with cultured stem cells: feeder cells, organoids and beyond. EMBO Mol Med. 2018;10:139–50. https://doi.org/10.15252/emmm.201708213.

    Article  CAS  Google Scholar 

  113. Palechor-Ceron N, Suprynowicz FA, Upadhyay G, Dakic A, Minas T, Simic V, et al. Radiation induces diffusible feeder cell factor(s) that cooperate with ROCK inhibitor to conditionally reprogram and immortalize epithelial cells. Am J Pathol. 2013;183:1862–70. https://doi.org/10.1016/j.ajpath.2013.08.009.

    Article  CAS  Google Scholar 

  114. Kruse FE, Tseng SCG. A serum-free clonal growth assay for limbal, peripheral, and central corneal epithelium. Invest Ophthalmol Vis Sci. 1991;32:2086–95.

    CAS  Google Scholar 

  115. Koizumi N, Inatomi T, Quantock AJ, Fullwood NJ, Dota A, Kinoshita S. Amniotic membrane as a substrate for cultivating limbal corneal epithelial cells for autologous transplantation in rabbits. Cornea. 2000;19:65–71. https://doi.org/10.1097/00003226-200001000-00013.

    Article  CAS  Google Scholar 

  116. Fukuda K, Chikama T, Nakamura M, Nishida T. Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva. Cornea. 1999;18:73–9.

    Article  CAS  Google Scholar 

  117. Kleinman HK, Luckenbill-Edds L, Cannon FW, Sephel GC. Use of extracellular matrix components for cell culture. Anal Biochem. 1987;166:1–13. https://doi.org/10.1016/0003-2697(87)90538-0.

    Article  CAS  Google Scholar 

  118. Reinach PS, SoccI RR, Keith C, Scanlon M. Adrenergic receptor-mediated increase of intracellular Ca2+ concentration in isolated bovine corneal epithelial cells. Comp Biochem Physiol Comp Physiol. 1992;102:709–14. https://doi.org/10.1016/0300-9629(92)90728-9.

    Article  CAS  Google Scholar 

  119. Cristaldi M, Olivieri M, Spampinato G, Anfuso CD, Scalia M, Lupo G, et al. Isolation and characterization of a new human corneal epithelial cell line: HCE-F. Cornea. 2020;39:1419–25. https://doi.org/10.1097/ICO.0000000000002357.

    Article  Google Scholar 

  120. Xiao YT, Qu JY, Xie HT, Zhang MC, Zhao XY. A Comparison of methods for isolation of limbal niche cells: maintenance of limbal epithelial stem/progenitor cells. Invest Ophthalmol Vis Sci. 2020;61:16. https://doi.org/10.1167/iovs.61.14.16.

    Article  CAS  Google Scholar 

  121. Dereli Can G, Akdere OE, Can ME, Aydin B, Cagil N, Gumusderelioglu M. A completely human-derived biomaterial mimicking limbal niche: platelet-rich fibrin gel. Exp Eye Res. 2018;173:1–12. https://doi.org/10.1016/j.exer.2018.04.013.

    Article  CAS  Google Scholar 

  122. Jirsova K, Jones GLA. Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting—a review. Cell Tissue Bank. 2017;18:193–204. https://doi.org/10.1007/s10561-017-9618-5.

    Article  CAS  Google Scholar 

  123. Geggel HS, Friend J, Thofr RA. Collagen gel for ocular surface. Invest Ophthalmol Vis Sci. 1985;26:901–5.

    CAS  Google Scholar 

  124. Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers. 2008;89:338–44. https://doi.org/10.1002/bip.20871.

    Article  CAS  Google Scholar 

  125. Chandran PL, Barocas VH. Microstructural mechanics of collagen gels in confined compression: poroelasticity, viscoelasticity, and collapse. J Biomech Eng. 2004;126:152–66. https://doi.org/10.1115/1.1688774.

    Article  Google Scholar 

  126. Taliana L, Evans MDM, Dimitrijevich SD, Steele JG. The influence of stromal contraction in a wound model system on corneal epithelial stratification. IOVS. 2001;42:81–9.

    CAS  Google Scholar 

  127. Tassman IS. The use of fibrin coagulum fixation in ocular surgery; in keratoplasty. Trans Am Acad Ophthalmol Otolaryngol. 1949;54:134–9.

    CAS  Google Scholar 

  128. Yeung AM, Faraj LA, McIntosh OD, Dhillon VK, Dua HS. Fibrin glue inhibits migration of ocular surface epithelial cells. Eye (Lond). 2016;30:1389–94. https://doi.org/10.1038/eye.2016.127.

    Article  CAS  Google Scholar 

  129. Dereli Can G, Akdere OE, Can ME, Gumusderelioglu M. A simple and efficient method for cultivation of limbal explant stem cells with clinically safe potential. Cytotherapy. 2019;21:83–95. https://doi.org/10.1016/j.jcyt.2018.11.005.

    Article  CAS  Google Scholar 

  130. Feng Y, Borrelli M, Reichl S, Schrader S, Geerling G. Review of alternative carrier materials for ocular surface reconstruction. Curr Eye Res. 2014;39:541–52. https://doi.org/10.3109/02713683.2013.853803.

    Article  CAS  Google Scholar 

  131. Danysh BP, Duncan MK. The lens capsule. Exp Eye Res. 2009;88:151–64. https://doi.org/10.1016/j.exer.2008.08.002.

    Article  CAS  Google Scholar 

  132. Krag S, Olsen T, Andreassen TT. Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest Ophthalmol Vis Sci. 1997;38:357–63.

    CAS  Google Scholar 

  133. Borzacchiello A, Russo L, Malle BM, Schwach-Abdellaoui K, Ambrosio L. Hyaluronic acid based hydrogels for regenerative medicine applications. Biomed Res Int. 2015;2015: 871218. https://doi.org/10.1155/2015/871218.

    Article  CAS  Google Scholar 

  134. Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24:2339–49. https://doi.org/10.1016/s0142-9612(03)00026-7.

    Article  CAS  Google Scholar 

  135. Rendal-Vazquez ME, San-Luis-Verdes A, Yebra-Pimentel-Vilar MT, Lopez-Rodriguez I, Domenech-Garcia N, Andion-Nunez C, et al. Culture of limbal stem cells on human amniotic membrane. Cell Tissue Bank. 2012;13:513–9. https://doi.org/10.1007/s10561-012-9300-x.

    Article  CAS  Google Scholar 

  136. Shortt AJ, Secker GA, Lomas RJ, Wilshaw SP, Kearney JN, Tuft SJ, et al. The effect of amniotic membrane preparation method on its ability to serve as a substrate for the ex-vivo expansion of limbal epithelial cells. Biomaterials. 2009;30:1056–65. https://doi.org/10.1016/j.biomaterials.2008.10.048.

    Article  CAS  Google Scholar 

  137. Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl KP. Amniotic membrane transplantation in the human eye. Dtsch Arztebl Int. 2011;108:243–8. https://doi.org/10.3238/arztebl.2011.0243.

    Article  Google Scholar 

  138. Hou L, Fu W, Liu Y, Wang Q, Wang L, Huang Y. Agrin promotes limbal stem cell proliferation and corneal wound healing through Hippo-Yap signaling pathway. Invest Ophthalmol Vis Sci. 2020;61:7. https://doi.org/10.1167/iovs.61.5.7.

    Article  CAS  Google Scholar 

  139. Ortega I, Deshpande P, Gill AA, MacNeil S, Claeyssens F. Development of a microfabricated artificial limbus with micropockets for cell delivery to the cornea. Biofabrication. 2013;5: 025008. https://doi.org/10.1088/1758-5082/5/2/025008.

    Article  CAS  Google Scholar 

  140. Chow S, Di Girolamo N. Vitronectin: a migration and wound healing factor for human corneal epithelial cells. Invest Ophthalmol Vis Sci. 2014;55:6590–600. https://doi.org/10.1167/iovs.14-15054.

    Article  CAS  Google Scholar 

  141. Schlotzer-Schrehardt U, Dietrich T, Saito K, Sorokin L, Sasaki T, Paulsson M, et al. Characterization of extracellular matrix components in the limbal epithelial stem cell compartment. Exp Eye Res. 2007;85:845–60. https://doi.org/10.1016/j.exer.2007.08.020.

    Article  CAS  Google Scholar 

  142. Rubert Perez CM, Stephanopoulos N, Sur S, Lee SS, Newcomb C, Stupp SI. The powerful functions of peptide-based bioactive matrices for regenerative medicine. Ann Biomed Eng. 2015;43:501–14. https://doi.org/10.1007/s10439-014-1166-6.

    Article  Google Scholar 

  143. Lai JY, Luo LJ, Ma DH. Effect of cross-linking density on the structures and properties of carbodiimide-treated gelatin matrices as limbal stem cell niches. Int J Mol Sci. 2018;19:3294. https://doi.org/10.3390/ijms19113294.

    Article  CAS  Google Scholar 

  144. Prina E, Amer MH, Sidney L, Tromayer M, Moore J, Liska R, et al. Bioinspired precision engineering of three-dimensional epithelial stem cell microniches. Adv Biosyst. 2020;4: e2000016. https://doi.org/10.1002/adbi.202000016.

    Article  CAS  Google Scholar 

  145. Wang W, Gao Q, Yu Z, Wang Y, Jiang M, Sun S, et al. Opening the soul window manually: limbal tissue scaffolds with electrospun polycaprolactone/gelatin nanocomposites. Macromol Biosci. 2021;21: e2000300. https://doi.org/10.1002/mabi.202000300.

    Article  CAS  Google Scholar 

  146. Ortega I, Ryan AJ, Deshpande P, MacNeil S, Claeyssens F. Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair. Acta Biomater. 2013;9:5511–20. https://doi.org/10.1016/j.actbio.2012.10.039.

    Article  CAS  Google Scholar 

  147. Ramachandran C, Sangwan VS, Ortega I, Bhatnagar U, Mulla SMA, McKean R, et al. Synthetic biodegradable alternatives to the use of the amniotic membrane for corneal regeneration: assessment of local and systemic toxicity in rabbits. Br J Ophthalmol. 2019;103:286–92. https://doi.org/10.1136/bjophthalmol-2018-312055.

    Article  Google Scholar 

  148. Koivusalo L, Kauppila M, Samanta S, Parihar VS, Ilmarinen T, Miettinen S, et al. Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of corneal epithelium and stroma. Biomaterials. 2019;225: 119516. https://doi.org/10.1016/j.biomaterials.2019.119516.

    Article  CAS  Google Scholar 

  149. Shukla S, Mittal SK, Foulsham W, Elbasiony E, Singhania D, Sahu SK, et al. Therapeutic efficacy of different routes of mesenchymal stem cell administration in corneal injury. Ocul Surf. 2019;17:729–36. https://doi.org/10.1016/j.jtos.2019.07.005.

    Article  Google Scholar 

  150. Nasr El-Din WA, Nooreldin N, Essawy AS. The potential therapeutic efficacy of intravenous versus subconjunctival mesenchymal stem cells on experimentally ultraviolet-induced corneal injury in adult male albino rats. Folia Morphol (Warsz). 2021. https://doi.org/10.5603/FM.a2021.0085.

    Article  Google Scholar 

  151. Holan V, Trosan P, Cejka C, Javorkova E, Zajicova A, Hermankova B, et al. A comparative study of the therapeutic potential of mesenchymal stem cells and limbal epithelial stem cells for ocular surface reconstruction. Stem Cells Transl Med. 2015;4:1052–63. https://doi.org/10.5966/sctm.2015-0039.

    Article  CAS  Google Scholar 

  152. Nguyen H. T., Theerakittayakorn K., Somredngan S., Ngernsoungnern A., Ngernsoungnern P., Sritangos P., et al. Signaling pathways impact on induction of corneal epithelial-like cells derived from human Wharton's Jelly mesenchymal stem cells. Int J Mol Sci. 2022; 23. https://doi.org/10.3390/ijms23063078.

  153. Gomes JA, Geraldes Monteiro B, Melo GB, Smith RL, Pereira Cavenaghi, da Silva M, Lizier NF, et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci. 2010;51:1408–14. https://doi.org/10.1167/iovs.09-4029.

    Article  Google Scholar 

  154. Blazejewska EA, Schlotzer-Schrehardt U, Zenkel M, Bachmann B, Chankiewitz E, Jacobi C, et al. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells. Stem Cells. 2009;27:642–52. https://doi.org/10.1634/stemcells.2008-0721.

    Article  CAS  Google Scholar 

  155. Sehic A, Utheim OA, Ommundsen K, Utheim TP. Pre-clinical cell-based therapy for limbal stem cell deficiency. J Funct Biomater. 2015;6:863–88. https://doi.org/10.3390/jfb6030863.

    Article  CAS  Google Scholar 

  156. He J, Ou S, Ren J, Sun H, He X, Zhao Z, et al. Tissue engineered corneal epithelium derived from clinical-grade human embryonic stem cells. Ocul Surf. 2020;18:672–80. https://doi.org/10.1016/j.jtos.2020.07.009.

    Article  Google Scholar 

  157. Zhang C, Du L, Pang K, Wu X. Differentiation of human embryonic stem cells into corneal epithelial progenitor cells under defined conditions. PLoS ONE. 2017;12: e0183303. https://doi.org/10.1371/journal.pone.0183303.

    Article  CAS  Google Scholar 

  158. Mikhailova A, Ilmarinen T, Ratnayake A, Petrovski G, Uusitalo H, Skottman H, et al. Human pluripotent stem cell-derived limbal epithelial stem cells on bioengineered matrices for corneal reconstruction. Exp Eye Res. 2016;146:26–34. https://doi.org/10.1016/j.exer.2015.11.021.

    Article  CAS  Google Scholar 

  159. Hongisto H, Ilmarinen T, Vattulainen M, Mikhailova A, Skottman H. Xeno- and feeder-free differentiation of human pluripotent stem cells to two distinct ocular epithelial cell types using simple modifications of one method. Stem Cell Res Ther. 2017;8:291. https://doi.org/10.1186/s13287-017-0738-4.

    Article  CAS  Google Scholar 

  160. Susaimanickam PJ, Maddileti S, Pulimamidi VK, Boyinpally SR, Naik RR, Naik MN, et al. Generating minicorneal organoids from human induced pluripotent stem cells. Development. 2017;144:2338–51. https://doi.org/10.1242/dev.143040.

    Article  CAS  Google Scholar 

  161. Foster JW, Wahlin K, Adams SM, Birk DE, Zack DJ, Chakravarti S. Cornea organoids from human induced pluripotent stem cells. Sci Rep. 2017;7:41286. https://doi.org/10.1038/srep41286.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Kejia Xu for her support in the literature search and full text acquisition.

Funding

The work was supported by the National Natural Science Foundation of China [Grant No. 81970767] and Natural Science Foundation of Shanghai [Grant No. 19ZR1408200].

Author information

Authors and Affiliations

Authors

Contributions

YS: literature search, data collection, and drafting the manuscript. QL: study conception and design, critical revision of the manuscript for important intellectual content, obtained funding, and supervision. Both authors read and approve the final manuscript.

Corresponding author

Correspondence to Qihua Le.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Le, Q. The progress in techniques for culturing human limbal epithelial stem cells. Human Cell 36, 1–14 (2023). https://doi.org/10.1007/s13577-022-00794-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-022-00794-2

Keywords

Navigation