Skip to main content

Advertisement

Log in

Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting—a review

  • Full Length Review
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

The use of amniotic membrane in ophthalmic surgery and other surgical procedures in the fields of dermatology, plastic surgery, genitourinary medicine and otolaryngology is on the increase. Furthermore, amniotic membrane and its epithelial and mesenchymal cells have broad use in regenerative medicine and hold great promise in anticancer treatment. Amniotic membrane is a rich source of biologically active factors and as such, promotes healing and acts as an effective material for wound dressing. Amniotic membrane supports epithelialization and exhibits anti-fibrotic, anti-inflammatory, anti-angiogenic and anti-microbial features. Placentas utilised in the preparation of amniotic membrane are retrieved from donors undergoing elective caesarean section. Maternal blood must undergo serological screening at the time of donation and, in the absence of advanced diagnostic testing techniques, 6 months postpartum in order to cover the time window for the potential transmission of communicable diseases. Amniotic membrane is prepared by blunt dissection under strict aseptic conditions, then is typically transferred onto a nitrocellulose paper carrier, usually with the epithelial side up, and cut into multiple pieces of different dimensions. Amniotic membrane can be stored under various conditions, most often cryopreserved in glycerol or dimethyl sulfoxide or their mixture with culture medium or buffers. Other preservation methods include lyophilisation and air-drying. In ophthalmology, amniotic membrane is increasingly used for ocular surface reconstruction, including the treatment of persistent epithelial defects and non-healing corneal ulcers, corneal perforations and descemetoceles, bullous keratopathy, as well as corneal disorders with associated limbal stem cell deficiency, pterygium, conjunctival reconstruction, corneoscleral melts and perforations, and glaucoma surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ab Hamid SS, Zahari NK, Yusof N, Hassan A (2014) Scanning electron microscopic assessment on surface morphology of preserved human amniotic membrane after gamma sterilisation. Cell Tissue Bank 15:15–24. doi:10.1007/s10561-012-9353-x

    Article  PubMed  Google Scholar 

  • Adds PJ, Hunt CJ, Dart JK (2001) Amniotic membrane grafts, “fresh” or frozen? A clinical and in vitro comparison. Br J Ophthalmol 85:905–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adinolfi M, Akle CA, McColl I, Fensom AH, Tansley L, Connolly P, Hsi BL, Faulk WP, Travers P, Bodmer WF (1982) Expression of HLA antigens, beta 2-microglobulin and enzymes by human amniotic epithelial cells. Nature 295:325–327

    Article  CAS  PubMed  Google Scholar 

  • Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 2:1003–1005

    Article  CAS  PubMed  Google Scholar 

  • Allen CL, Clare G, Stewart EA, Branch MJ, McIntosh OD, Dadhwal M, Dua HS, Hopkinson A (2013) Augmented dried versus cryopreserved amniotic membrane as an ocular surface dressing. PLoS ONE 8:e78441. doi:10.1371/journal.pone.0078441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baradaran-Rafii A, Aghayan HR, Arjmand B, Javadi MA (2007) Amniotic membrane transplantation. Iran J Ophthalmic Res 2:58–75

    Google Scholar 

  • Bonci P, Bonci P, Lia A (2005) Suspension made with amniotic membrane: clinical trial. Eur J Ophthalmol 15:441–445

    Google Scholar 

  • Boudreau N, Sympson CJ, Werb Z, Bissell MJ (1995) Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:891–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourne GL (1960) The microscopic anatomy of the human amnion and chorion. Am J Obstet Gynecol 79:1070–1073

    Article  CAS  PubMed  Google Scholar 

  • Burgos H, Sergeant RJ (1983) Lyophilized human amniotic membranes used in reconstruction of the ear. J R Soc Med 76:433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron PU, Pagnon JC, van Baare J, Reece JC, Vardaxis NJ, Crowe SM (2000) Efficacy and kinetics of glycerol inactivation of HIV-1 in split skin grafts. J Med Virol 60:182–188

    Article  CAS  PubMed  Google Scholar 

  • Champliaud MF, Lunstrum GP, Rousselle P, Nishiyama T, Keene DR, Burgeson RE (1996) Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment. J Cell Biol 132:1189–1198

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FG, MacDonald PC, Leveno KJ (2001) Williams obstetrics, 21st edn. McGrawHill, New York

    Google Scholar 

  • Davis JW (1910) Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med J 15:307

    Google Scholar 

  • Dekaris I, Gabric N (2009) Preparation and preservation of amniotic membrane. Dev Ophthalmol 43:97–104. doi:10.1159/000223842

    Article  PubMed  Google Scholar 

  • deRotth A (1940) Plastic repair of conjunctival defects with fetal membrane. Arch Ophthalmol 23:522–525

    Article  Google Scholar 

  • Dietrich-Ntoukas T, Hofmann-Rummelt C, Kruse FE, Schlotzer-Schrehardt U (2012) Comparative analysis of the basement membrane composition of the human limbus epithelium and amniotic membrane epithelium. Cornea 31:564–569. doi:10.1097/ICO.0b013e3182254b78

    Article  PubMed  Google Scholar 

  • Dua HS, Azuara-Blanco A (1999) Amniotic membrane transplantation. Br J Ophthalmol 83:748–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dua HS, Gomes JA, King AJ, Maharajan VS (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 49:51–77

    Article  PubMed  Google Scholar 

  • EEBA Directory (2017) European Eye Bank Association, Directory, 25th edn. EEBA Directory, Prague

    Google Scholar 

  • Fernandes M, Sridhar MS, Sangwan VS, Rao GN (2005) Amniotic membrane transplantation for ocular surface reconstruction. Cornea 24:643–653

    Article  PubMed  Google Scholar 

  • Fukuda K, Chikama T, Nakamura M, Nishida T (1999) Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva. Cornea 18:73–79

    Article  CAS  PubMed  Google Scholar 

  • Gajiwala K, Gajiwala AL (2004) Evaluation of lyophilised, gamma-irradiated amnion as a biological dressing. Cell Tissue Bank 5:73–80

    Article  PubMed  Google Scholar 

  • Galask RP, Snyder IS (1970) Antimicrobial factors in amniotic fluid. Am J Obstet Gynecol 106:59–65

    Article  CAS  PubMed  Google Scholar 

  • Gatto C, Giurgola L, D’Amato Tothova J (2013) A suitable and efficient procedure for the removal of decontaminating antibiotics from tissue allografts. Cell Tissue Bank 14:107–115. doi:10.1007/s10561-012-9305-5

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Grinnell F (1989) Basement membrane and human epidermal differentiation in vitro. J Invest Dermatol 93:372–378

    Article  CAS  PubMed  Google Scholar 

  • Gusdon JP (1962) A bactericidin for Bacillus subtilis in pregnancy. J Immunol 88:494–499

    CAS  PubMed  Google Scholar 

  • Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F (2000) Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 19:348–352

    Article  CAS  PubMed  Google Scholar 

  • Hettiarachchi D, Dissanayake VH, Goonasekera HW (2016) Optimizing amniotic membrane tissue banking protocols for ophthalmic use. Cell Tissue Bank 17:387–3974. doi:10.1007/s10561-016-9568-3

    Article  CAS  PubMed  Google Scholar 

  • Houlihan JM, Biro PA, Harper HM, Jenkinson HJ, Holmes CH (1995) The human amnion is a site of MHC class Ib expression: evidence for the expression of HLA-E and HLA-G. J Immunol 154:5665–5674

    CAS  PubMed  Google Scholar 

  • Huang G, Ji S, Luo P, Liu H, Zhu S, Wang G, Zhou P, Xiao S, Xia Z (2013) Accelerated expansion of epidermal keratinocyte and improved dermal reconstruction achieved by engineered amniotic membrane. Cell Transplant 22:1831–1844

    Article  PubMed  Google Scholar 

  • Ilancheran S, Michalska A, Peh G, Wallace EM, Pera M, Manuelpillai U (2007) Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 77:577–588. doi:10.1095/biolreprod.106.055244

    Article  CAS  PubMed  Google Scholar 

  • Insausti CL, Blanquer M, Garcia-Hernandez AM, Castellanos G, Moraleda JM (2014) Amniotic membrane-derived stem cells: immunomodulatory properties and potential clinical application. Stem Cells Cloning 7:53–63. doi:10.2147/SCCAA.S58696

    PubMed  PubMed Central  Google Scholar 

  • Keelan JA, Sato T, Mitchell MD (1997) Interleukin (IL)-6 and IL-8 production by human amnion: regulation by cytokines, growth factors, glucocorticoids, phorbol esters, and bacterial lipopolysaccharide. Biol Reprod 57:1438–1444

    Article  CAS  PubMed  Google Scholar 

  • Keene DR, Sakai LY, Lunstrum GP, Morris NP, Burgeson RE (1987) Type VII collagen forms an extended network of anchoring fibrils. J Cell Biol 104:611–621

    Article  CAS  PubMed  Google Scholar 

  • Keitel S (2015) Guide to the quality and safety of tissues and cells for human application, European Committee (Partial Agreement) on Organ Transplantation, European Directorate for the Quality of Medicines & HealthCare (EDQM), 2nd edn. Council of Europe, Strasbourg, pp 349–355. https://www.edqm.eu/sites/default/files/foreword_list_of_contents_tissues_cell_guide_2nd_edition_2015.pdf. Accessed 1 March 2017

  • Kesting MR, Wolff KD, Nobis CP, Rohleder NH (2014) Amniotic membrane in oral and maxillofacial surgery. Oral Maxillofac Surg 18:153–164. doi:10.1007/s10006-012-0382-1 (Review)

    Article  PubMed  Google Scholar 

  • Khokhar S, Sharma N, Kumar H, Soni A (2001) Infection after use of nonpreserved human amniotic membrane for the reconstruction of the ocular surface. Cornea 20:773–774

    Article  CAS  PubMed  Google Scholar 

  • Kim JC, Tseng SC (1995a) The effects on inhibition of corneal neovascularization after human amniotic membrane transplantation in severely damaged rabbit corneas. Korean J Ophthalmol 9:32–46. doi:10.3341/kjo.1995.9.1.32

    Article  CAS  PubMed  Google Scholar 

  • Kim JC, Tseng SC (1995b) Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea 14:473–484

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kim JC, Hahn TW, Park WC (2001) Amniotic membrane transplantation in infectious corneal ulcer. Cornea 20:720–726

    Article  CAS  PubMed  Google Scholar 

  • Kim EY, Lee KB, Kim MK (2014) The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy. BMB Rep 47:135–140

    Article  PubMed  PubMed Central  Google Scholar 

  • Kjaergaard N, Helmig RB, Schonheyder HC, Uldbjerg N, Hansen ES, Madsen H (1999) Chorioamniotic membranes constitute a competent barrier to group b streptococcus in vitro. Eur J Obstet Gynecol Reprod Biol 83:165–169

    Article  CAS  PubMed  Google Scholar 

  • Koizumi N, Fullwood NJ, Bairaktaris G, Inatomi T, Kinoshita S, Quantock AJ (2000a) Cultivation of corneal epithelial cells on intact and denuded human amniotic membrane. Invest Ophthalmol Vis Sci 41:2506–2513

    CAS  PubMed  Google Scholar 

  • Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S (2000b) Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20:173–177

    Article  CAS  PubMed  Google Scholar 

  • Koizumi N, Rigby H, Fullwood NJ, Kawasaki S, Tanioka H, Koizumi K, Kociok N, Joussen AM, Kinoshita S (2007) Comparison of intact and denuded amniotic membrane as a substrate for cell-suspension culture of human limbal epithelial cells. Graefes Arch Clin Exp Ophthalmol 245:123–134. doi:10.1007/s00417-005-0095-3

    Article  PubMed  Google Scholar 

  • Koller J, Orsag M (2006) Skin grafting options at the Burn and Reconstructive Surgery Department of the Faculty Hospital in Bratislava. Acta Chir Plast 48:65–71

    CAS  PubMed  Google Scholar 

  • Kordic R, Suic SP, Jandrokovic S, Kalauz M, Kuzman T, Skegro I, Jukic T (2013) Application of the amniotic membrane extract (AMX) for the persistent epithelial defect (PED) of the cornea. Coll Antropol 37(Suppl 1):161–164

    PubMed  Google Scholar 

  • Kruse FE, Joussen AM, Rohrschneider K, You L, Sinn B, Baumann J, Volcker HE (2000) Cryopreserved human amniotic membrane for ocular surface reconstruction. Graefes Arch Clin Exp Ophthalmol 238:68–75

    Article  CAS  PubMed  Google Scholar 

  • Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol Vis Sci 42:1539–1546

    CAS  PubMed  Google Scholar 

  • Lee SH, Tseng SC (1997) Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol 123:303–312

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Li DQ, Tan DT, Meller DC, Tseng SC (2000) Suppression of TGF-beta signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr Eye Res 20:325–334

    Article  CAS  PubMed  Google Scholar 

  • Lo V, Pope E (2009) Amniotic membrane use in dermatology. Int J Dermatol 48:935–940. doi:10.1111/j.1365-4632.2009.04173.x

    Article  CAS  PubMed  Google Scholar 

  • Malhotra C, Jain AK (2014) Human amniotic membrane transplantation: different modalities of its use in ophthalmology. World J Transplant 4:111–121. doi:10.5500/wjt.v4.i2.111

    PubMed  PubMed Central  Google Scholar 

  • Mamede AC, Carvalho MJ, Abrantes AM, Laranjo M, Maia CJ, Botelho MF (2012) Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349:447–458. doi:10.1007/s00441-012-1424-6

    Article  CAS  PubMed  Google Scholar 

  • Maral T, Borman H, Arslan H, Demirhan B, Akinbingol G, Haberal M (1999) Effectiveness of human amnion preserved long-term in glycerol as a temporary biological dressing. Burns 25:625–635

    Article  CAS  PubMed  Google Scholar 

  • Marangon FB, Alfonso EC, Miller D, Remonda NM, Muallem MS, Tseng SC (2004) Incidence of microbial infection after amniotic membrane transplantation. Cornea 23:264–269

    Article  PubMed  Google Scholar 

  • Meller D, Pires RT, Tseng SC (2002) Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br J Ophthalmol 86:463–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl KP (2011) Amniotic membrane transplantation in the human eye. Dtsch Arztebl Int 108:243–248. doi:10.3238/arztebl.2011.0243

    PubMed  PubMed Central  Google Scholar 

  • Messmer EM (2001) Hypopyon after amniotic membrane transplantation. Ophthalmology 108:1714–1715

    Article  CAS  PubMed  Google Scholar 

  • Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559. doi:10.1634/stemcells.2004-0357

    Article  CAS  PubMed  Google Scholar 

  • Mrazova H, Koller J, Kubisova K, Fujerikova G, Klincova E, Babal P (2015) Comparison of structural changes in skin and amnion tissue grafts for transplantation induced by gamma and electron beam irradiation for sterilization. Cell Tissue Bank. doi:10.1007/s10561-015-9536-3

    PubMed  Google Scholar 

  • Nakamura T, Yoshitani M, Rigby H, Fullwood NJ, Ito W, Inatomi T, Sotozono C, Nakamura T, Shimizu Y, Kinoshita S (2004) Sterilized, freeze-dried amniotic membrane: a useful substrate for ocular surface reconstruction. Invest Ophthalmol Vis Sci 45:93–99

    Article  PubMed  Google Scholar 

  • Niknejad H, Khayat-Khoei M, Peirovi H, Abolghasemi H (2014) Human amniotic epithelial cells induce apoptosis of cancer cells: a new anti-tumor therapeutic strategy. Cytotherapy 16:33–40. doi:10.1016/j.jcyt.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  • Paolin A, Cogliati E, Trojan D, Griffoni C, Grassetto A, Elbadawy HM, Ponzin D (2016a) Amniotic membranes in ophthalmology: long term data on transplantation outcomes. Cell Tissue Bank 17:51–58. doi:10.1007/s10561-015-9520-y

    Article  PubMed  Google Scholar 

  • Paolin A, Trojan D, Leonardi A, Mellone S, Volpe A, Orlandi A, Cogliati E (2016b) Cytokine expression and ultrastructural alterations in fresh-frozen, freeze-dried and γ-irradiated human amniotic membranes. Cell Tissue Bank 17:399–406. doi:10.1007/s10561-016-9553-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem Cells 26:300–311. doi:10.1634/stemcells.2007-0594

    Article  PubMed  Google Scholar 

  • Rahman I, Said DG, Maharajan VS, Dua HS (2009) Amniotic membrane in ophthalmology: indications and limitations. Eye (Lond) 23:1954–1961. doi:10.1038/eye.2008.410

    Article  CAS  Google Scholar 

  • Rama P, Giannini R, Bruni A, Gatto C, Tiso R, Ponzin D (2001) Further evaluation of amniotic membrane banking for transplantation in ocular surface diseases. Cell Tissue Bank 2:155–163

    Article  CAS  PubMed  Google Scholar 

  • Resch MD, Schlötzer-Schrehardt U, Hofmann-Rummelt C, Sauer R, Cursiefen C, Kruse FE, Beckmann MW, Seitz B (2006) Adhesion structures of amniotic membranes integrated into human corneas. Invest Ophthalmol Vis Sci 47:1853–1861. doi:10.1167/iovs.05-0983

    Article  PubMed  Google Scholar 

  • Rodriguez-Ares MT, Lopez-Valladares MJ, Tourino R, Vieites B, Gude F, Silva MT, Couceiro J (2009) Effects of lyophilization on human amniotic membrane. Acta Ophthalmol 87:396–403. doi:10.1111/j.1755-3768.2008.01261.x

    Article  PubMed  Google Scholar 

  • Runic R, Lockwood CJ, LaChapelle L, Dipasquale B, Demopoulos RI, Kumar A, Guller S (1998) Apoptosis and Fas expression in human fetal membranes. J Clin Endocrinol Metab 83:660–666. doi:10.1210/jcem.83.2.4600

    CAS  PubMed  Google Scholar 

  • Russo A, Bonci P, Bonci P (2012) The effects of different preservation processes on the total protein and growth factor content in a new biological product developed from human amniotic membrane. Cell Tissue Bank 13:353–361. doi:10.1007/s10561-011-9261-5

    Article  CAS  PubMed  Google Scholar 

  • Saghizadeh M, Winkler MA, Kramerov AA, Hemmati DM, Ghiam CA, Dimitrijevich SD, Sareen D, Ornelas L, Ghiasi H, Brunken WJ, Maguen E, Rabinowitz YS, Svendsen CN, Jirsova K, Ljubimov AV (2013) A simple alkaline method for decellularizing human amniotic membrane for cell culture. PLoS ONE 8:e79632. doi:10.1371/journal.pone.0079632

    Article  PubMed  PubMed Central  Google Scholar 

  • Serena TE, Carter MJ, Le LT, Sabo MJ, DiMarco DT, EpiFix VLU Study Group (2014) A multicenter, randomized, controlled clinical trial evaluating the use of dehydrated human amnion/chorion membrane allografts and multilayer compression therapy vs. multilayer compression therapy alone in the treatment of venous leg ulcers. Wound Repair Regen 22:688–693. doi:10.1111/wrr.12227

    Article  PubMed  Google Scholar 

  • Shimazaki J, Shinozaki N, Tsubota K (1998) Transplantation of amniotic membrane and limbal autograft for patients with recurrent pterygium associated with symblepharon. Br J Ophthalmol 82:235–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimmura S, Shimazaki J, Ohashi Y, Tsubota K (2001) Antiinflammatory effects of amniotic membrane transplantation in ocular surface disorders. Cornea 20:408–413

    Article  CAS  PubMed  Google Scholar 

  • Shortt AJ, Secker GA, Lomas RJ, Wilshaw SP, Kearney JN, Tuft SJ, Daniels JT (2009) The effect of amniotic membrane preparation method on its ability to serve as a substrate for the ex vivo expansion of limbal epithelial cells. Biomaterials 30:1056–1065. doi:10.1016/j.biomaterials.2008.10.048

    Article  CAS  PubMed  Google Scholar 

  • Simonds RJ, Holmberg SD, Hurwitz RL, Coleman TR, Bottenfield S, Conley LJ, Kohlenberg SH, Castro KG, Dahan BA, Schable CA et al (1992) Transmission of human immunodeficiency virus type 1 from a seronegative organ and tissue donor. N Engl J Med 326:726–732

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Chacharkar MP (2011) Dried gamma-irradiated amniotic membrane as dressing in burn wound care. J Tissue Viability 20:49–54. doi:10.1016/j.jtv.2010.06.001

    Article  PubMed  Google Scholar 

  • Singh R, Gupta P, Kumar P, Kumar A, Chacharkar MP (2003) Properties of air dried radiation processed amniotic membranes under different storage conditions. Cell Tissue Bank 4:95–100. doi:10.1023/B:CATB.0000007030.72031.12

    Article  PubMed  Google Scholar 

  • Solomon A, Rosenblatt M, Monroy D, Ji Z, Pflugfelder SC, Tseng SC (2001) Suppression of interleukin 1alpha and interleukin 1beta in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br J Ophthalmol 85:444–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tallentire A (1980) The spectrum of microbial radiation sensitivity. Radiat Phys Chem 15:83–89

    Google Scholar 

  • Talmi YP, Sigler L, Inge E, Finkelstein Y, Zohar Y (1991) Antibacterial properties of human amniotic membranes. Placenta 12:285–288

    Article  CAS  PubMed  Google Scholar 

  • Tauzin H, Rolin G, Viennet C, Saas P, Humbert P, Muret P (2014) A skin substitute based on human amniotic membrane. Cell Tissue Bank 15:257–265. doi:10.1007/s10561-014-9427-z

    Article  CAS  PubMed  Google Scholar 

  • Thomasen H, Pauklin M, Steuhl KP, Meller D (2009) Comparison of cryopreserved and air-dried human amniotic membrane for ophthalmologic applications. Graefes Arch Clin Exp Ophthalmol 247:1691–1700. doi:10.1007/s00417-009-1162-y

    Article  PubMed  Google Scholar 

  • Thomasen H, Pauklin M, Noelle B, Geerling G, Vetter J, Steven P, Steuhl KP, Meller D (2011) The effect of long-term storage on the biological and histological properties of cryopreserved amniotic membrane. Curr Eye Res 36:247–255. doi:10.3109/02713683.2010.542267

    Article  CAS  PubMed  Google Scholar 

  • Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105:215–228

    Article  CAS  PubMed  Google Scholar 

  • Tseng SC, Li DQ, Ma X (1999) Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol 179:325–335. doi:10.1002/(SICI)1097-4652(199906)179:3<325:AID-JCP10>3.0.CO;2-X

    Article  CAS  PubMed  Google Scholar 

  • Tseng SC, Chen SY, Shen YC, Chen WL, Hu FR (2010) Critical appraisal of ex vivo expansion of human limbal epithelial stem cells. Curr Mol Med 10:841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Versen-Höynck F, Syring C, Bachmann S, Möller DE (2004) The influence of different preservation and sterilisation steps on the histological properties of amnion allografts–light and scanning electron microscopic studies. Cell Tissue Bank 5:45–56

    Article  Google Scholar 

  • Wang F, Wang L, Yao X, Lai D, Guo L (2013) Human amniotic epithelial cells can differentiate into granulosa cells and restore folliculogenesis in a mouse model of chemotherapy-induced premature ovarian failure. Stem Cell Res Ther 4:124. doi:10.1186/scrt335

    Article  PubMed  PubMed Central  Google Scholar 

  • Zidan SM, Eleowa SA, Nasef MA, Abd-Almoktader MA, Elbatawy AM, Borhamy AG, Aboliela MA, Ali AM, Algamal MR (2015) Maximizing the safety of glycerol preserved human amniotic membrane as a biological dressing. Burns 41:1498–1503. doi:10.1016/j.burns.2015.03.009

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the Norwegian Financial Mechanism 2009–2014 and the Ministry of Education, Youth and Sports of the Czech Republic under Project Contract no. MSMT-28477/2014, Project 7F14156. The authors thank Dr. Peter Trosan for the preparation of images in Fig. 1b, c.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Jirsova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Method of Literature Search: PubMed/Medline database searches were undertaken in an iterative manner from July 2012 onwards using the key words of placenta and amniotic membrane, together with other specific keywords for each described section (i.e. amniotic membrane plus procurement).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jirsova, K., Jones, G.L.A. Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting—a review. Cell Tissue Bank 18, 193–204 (2017). https://doi.org/10.1007/s10561-017-9618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-017-9618-5

Keywords

Navigation