Skip to main content
Log in

Comparative Analysis of Human-Derived Feeder Layers with 3T3 Fibroblasts for the Ex Vivo Expansion of Human Limbal and Oral Epithelium

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Corneal transplantation with cultivated limbal or oral epithelium is a feasible treatment option for limbal stem cell deficiency (LSCD). Currently utilized co-culture of stem cells with murine 3T3 feeder layer renders the epithelial constructs as xenografts. To overcome the potential risks involved with xenotransplantation, we investigated the use of human-derived feeder layers for the ex vivo expansion of epithelial (stem) cells. Human limbal and oral epithelium was co-cultured with mouse 3T3 fibroblasts, human dermal fibroblasts (DF), human mesenchymal stem cells (MSC), and with no feeder cells (NF). Cell morphology was monitored with phase-contrast microscopy, and stem cell characteristics were assessed by immunohistochemistry, real-time PCR for p63 and ABCG2, (stem cell markers), and by colony-forming efficiency (CFE) assay. Immunohistochemical analysis detected positive staining for CK3 (cornea specific marker) and Iβ1 and p63 (putative stem cell markers) in all culture conditions. The level of Iβ1 and p63 was significantly higher in both limbal and oral cells cultured on the 3T3 feeder, as compared to the MSC or NF group (p < 0.01). This level was comparable to the cells cultured on DF. Expression of p63 and ABCG2 in limbal and oral epithelial cells in the 3T3 and DF groups was significantly higher than that in the MSC or NF group (p < 0.01). No statistical difference was detected between 3T3 and DF groups. The CFE of both limbal and oral cells co-cultured on 3T3 fibroblasts was comparable to cells grown on DF, and was significantly higher than that of cells co-cultured with MSC or NF (p < 0.01). Epithelial cells grown on a DF feeder layer maintained a stem cell-like phenotype, comparable to cells grown on a 3T3 feeder layer. In conclusion, DF provides a promising substitute for 3T3 feeder cells during cultivation of xenobiotic-free corneal equivalents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cotsarelis, G., Cheng, S. Z., Dong, G., Sun, T. T., & Lavker, R. M. (1989). Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell, 57(2), 201–209.

    Article  PubMed  CAS  Google Scholar 

  2. Davanger, M., & Evensen, A. (1971). Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature, 229(5286), 560–561.

    Article  PubMed  CAS  Google Scholar 

  3. Schermer, A., Galvin, S., & Sun, T. T. (1986). Differentiation-related expression of a major 64 K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. The Journal of Cell Biology, 103(1), 49–62.

    Article  PubMed  CAS  Google Scholar 

  4. Puangsricharern, V., & Tseng, S. C. (1995). Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology, 102(10), 1476–1485.

    PubMed  CAS  Google Scholar 

  5. Kolli, S., Ahmad, S., Lako, M., & Figueiredo, F. (2010). Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells, 28(3), 597–610.

    PubMed  CAS  Google Scholar 

  6. Whitcher, J. P., Srinivasan, M., & Upadhyay, M. P. (2001). Corneal blindness: a global perspective. Bulletin of the World Health Organization, 79(3), 214–221.

    PubMed  CAS  Google Scholar 

  7. Notara, M., Alatza, A., Gilfillan, J., et al. (2010). In sickness and in health: corneal epithelial stem cell biology, pathology and therapy. Experimental Eye Research, 90(2), 188–195.

    Article  PubMed  CAS  Google Scholar 

  8. Nishida, K., Yamato, M., Hayashida, Y., et al. (2004). Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. The New England Journal of Medicine, 351(12), 1187–1196.

    Article  PubMed  CAS  Google Scholar 

  9. Pellegrini, G., Traverso, C. E., Franzi, A. T., Zingirian, M., Cancedda, R., & De Luca, M. (1997). Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet, 349(9057), 990–993.

    Article  PubMed  CAS  Google Scholar 

  10. Tsai, R. J., Li, L. M., & Chen, J. K. (2000). Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. The New England Journal of Medicine, 343(2), 86–93.

    Article  PubMed  CAS  Google Scholar 

  11. Koizumi, N., Cooper, L. J., Fullwood, N. J., et al. (2002). An evaluation of cultivated corneal limbal epithelial cells, using cell-suspension culture. Investigative Ophthalmology & Visual Science, 43(7), 2114–2121.

    Google Scholar 

  12. Kinoshita, S., & Nakamura, T. (2004). Development of cultivated mucosal epithelial sheet transplantation for ocular surface reconstruction. Artificial Organs, 28(1), 22–27.

    Article  PubMed  Google Scholar 

  13. Nishida, K., Yamato, M., Hayashida, Y., et al. (2004). Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation, 77(3), 379–385.

    Article  PubMed  Google Scholar 

  14. Kolli, S., Ahmad, S., Lako, M., & Figueiredo, F. (2010). Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells, 28(3), 597–610.

    PubMed  CAS  Google Scholar 

  15. Pauklin, M., Fuchsluger, T. A., Westekemper, H., Steuhl, K. P., & Meller, D. (2010). Midterm results of cultivated autologous and allogeneic limbal epithelial transplantation in limbal stem cell deficiency. Developments in Ophthalmology, 45, 57–70.

    Article  PubMed  Google Scholar 

  16. Shimazaki, J., Aiba, M., Goto, E., Kato, N., Shimmura, S., & Tsubota, K. (2002). Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorders. Ophthalmology, 109(7), 1285–1290.

    Article  PubMed  Google Scholar 

  17. Daya, S. M., Watson, A., Sharpe, J. R., et al. (2005). Outcomes and DNA analysis of ex vivo expanded stem cell allograft for ocular surface reconstruction. Ophthalmology, 112(3), 470–477.

    Article  PubMed  Google Scholar 

  18. Meyer-Blazejewska, E. A., Kruse, F. E., Bitterer, K., et al. (2010). Preservation of the limbal stem cell phenotype by appropriate culture techniques. Investigative Ophthalmology & Visual Science, 51(2), 765–774.

    Article  Google Scholar 

  19. Nakamura, T., Inatomi, T., Sotozono, C., et al. (2006). Transplantation of autologous serum-derived cultivated corneal epithelial equivalents for the treatment of severe ocular surface disease. Ophthalmology, 113(10), 1765–1772.

    Article  PubMed  Google Scholar 

  20. Rama, P., Bonini, S., Lambiase, A., et al. (2001). Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency. Transplantation, 72(9), 1478–1485.

    Article  PubMed  CAS  Google Scholar 

  21. Schwab, I. R., Reyes, M., & Isseroff, R. R. (2000). Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea, 19(4), 421–426.

    Article  PubMed  CAS  Google Scholar 

  22. Grueterich, M., Espana, E. M., & Tseng, S. C. (2003). Modulation of keratin and connexin expression in limbal epithelium expanded on denuded amniotic membrane with and without a 3T3 fibroblast feeder layer. Investigative Ophthalmology & Visual Science, 44(10), 4230–4236.

    Article  Google Scholar 

  23. Pellegrini, G., Golisano, O., Paterna, P., et al. (1999). Location and clonal analysis of stem cells and their differentiated progeny in the human ocular surface. The Journal of Cell Biology, 145(4), 769–782.

    Article  PubMed  CAS  Google Scholar 

  24. Rheinwald, J. G., & Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell, 6(3), 331–343.

    Article  PubMed  CAS  Google Scholar 

  25. Martin, M. J., Muotri, A., Gage, F., & Varki, A. (2005). Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nature Medicine, 11(2), 228–232.

    Article  PubMed  CAS  Google Scholar 

  26. Koizumi, N., Inatomi, T., Suzuki, T., Sotozono, C., & Kinoshita, S. (2001). Cultivated corneal epithelial stem cell transplantation in ocular surface disorders. Ophthalmology, 108(9), 1569–1574.

    Article  PubMed  CAS  Google Scholar 

  27. Omoto, M., Miyashita, H., Shimmura, S., et al. (2009). The use of human mesenchymal stem cell-derived feeder cells for the cultivation of transplantable epithelial sheets. Investigative Ophthalmology & Visual Science, 50(5), 2109–2115.

    Article  Google Scholar 

  28. Nakamura, T., Inatomi, T., Sotozono, C., Amemiya, T., Kanamura, N., & Kinoshita, S. (2004). Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. The British Journal of Ophthalmology, 88(10), 1280–1284.

    Article  PubMed  CAS  Google Scholar 

  29. Nakamura, T., Ang, L. P., Rigby, H., et al. (2006). The use of autologous serum in the development of corneal and oral epithelial equivalents in patients with Stevens-Johnson syndrome. Investigative Ophthalmology & Visual Science, 47(3), 909–916.

    Article  Google Scholar 

  30. Jones, P. H., Harper, S., & Watt, F. M. (1995). Stem cell patterning and fate in human epidermis. Cell, 80(1), 83–93.

    Article  PubMed  CAS  Google Scholar 

  31. Pellegrini, G., Dellambra, E., Golisano, O., et al. (2001). p63 identifies keratinocyte stem cells. Proceedings of the National Academy of Sciences of the United States of America, 98(6), 3156–3161.

    Article  PubMed  CAS  Google Scholar 

  32. de Paiva, C. S., Chen, Z., Corrales, R. M., Pflugfelder, S. C., & Li, D. Q. (2005). ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells, 23(1), 63–73.

    Article  PubMed  Google Scholar 

  33. Grueterich, M., Espana, E. M., Touhami, A., Ti, S. E., & Tseng, S. C. (2002). Phenotypic study of a case with successful transplantation of ex vivo expanded human limbal epithelium for unilateral total limbal stem cell deficiency. Ophthalmology, 109(8), 1547–1552.

    Article  PubMed  Google Scholar 

  34. Sangwan, V. S., Matalia, H. P., Vemuganti, G. K., et al. (2006). Clinical outcome of autologous cultivated limbal epithelium transplantation. Indian Journal of Ophthalmology, 54(1), 29–34.

    Article  PubMed  Google Scholar 

  35. Madhira, S. L., Vemuganti, G., Bhaduri, A., Gaddipati, S., Sangwan, V. S., & Ghanekar, Y. (2008). Culture and characterization of oral mucosal epithelial cells on human amniotic membrane for ocular surface reconstruction. Molecular Vision, 14, 189–196.

    PubMed  CAS  Google Scholar 

  36. Pauklin, M., Fuchsluger, T. A., Westekemper, H., Steuhl, K. P., & Meller, D. (2010). Midterm results of cultivated autologous and allogeneic limbal epithelial transplantation in limbal stem cell deficiency. Developments in Ophthalmology, 45, 57–70.

    Article  PubMed  Google Scholar 

  37. Baradaran-Rafii, A., Ebrahimi, M., Kanavi, M. R., et al. (2011). Midterm outcomes of autologous cultivated limbal stem cell transplantation with or without penetrating keratoplasty. Cornea, 29(5), 502–509.

    Article  Google Scholar 

  38. Meyer-Blazejewska, E. A., Kruse, F. E., Bitterer, K., et al. (2010). Preservation of the limbal stem cell phenotype by appropriate culture techniques. Investigative Ophthalmology & Visual Science, 51(2), 765–774.

    Article  Google Scholar 

  39. Inatomi, T., Nakamura, T., Kojyo, M., Koizumi, N., Sotozono, C., & Kinoshita, S. (2006). Ocular surface reconstruction with combination of cultivated autologous oral mucosal epithelial transplantation and penetrating keratoplasty. American Journal of Ophthalmology, 142(5), 757–764.

    Article  PubMed  Google Scholar 

  40. Nakamura, T., Inatomi, T., Sotozono, C., Koizumi, N., & Kinoshita, S. (2004). Successful primary culture and autologous transplantation of corneal limbal epithelial cells from minimal biopsy for unilateral severe ocular surface disease. Acta Ophthalmologica Scandinavica, 82(4), 468–471.

    Article  PubMed  Google Scholar 

  41. Nakamura, T., Koizumi, N., Tsuzuki, M., et al. (2003). Successful regrafting of cultivated corneal epithelium using amniotic membrane as a carrier in severe ocular surface disease. Cornea, 22(1), 70–71.

    Article  PubMed  Google Scholar 

  42. Li, W., Hayashida, Y., He, H., Kuo, C. L., & Tseng, S. C. (2007). The fate of limbal epithelial progenitor cells during explant culture on intact amniotic membrane. Investigative Ophthalmology & Visual Science, 48(2), 605–613.

    Article  Google Scholar 

  43. Oie, Y., Hayashi, R., Takagi, R., et al. (2010). A novel method of culturing human oral mucosal epithelial cell sheet using post-mitotic human dermal fibroblast feeder cells and modified keratinocyte culture medium for ocular surface reconstruction. The British Journal of Ophthalmology, 94(9), 1244–1250.

    Article  PubMed  Google Scholar 

  44. Yokoo, S., Yamagami, S., Usui, T., Amano, S., & Araie, M. (2008). Human corneal epithelial equivalents for ocular surface reconstruction in a complete serum-free culture system without unknown factors. Investigative Ophthalmology & Visual Science, 49(6), 2438–2443.

    Article  Google Scholar 

  45. Fukuda, K., Fujitsu, Y., Seki, K., Kumagai, N., & Nishida, T. (2003). Differential expression of thymus- and activation-regulated chemokine (CCL17) and macrophage-derived chemokine (CCL22) by human fibroblasts from cornea, skin, and lung. The Journal of Allergy and Clinical Immunology, 111(3), 520–526.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang, Y. Q., Zhang, W. J., Liu, W., et al. (2008). Tissue engineering of corneal stromal layer with dermal fibroblasts: phenotypic and functional switch of differentiated cells in cornea. Tissue Engineering. Part A, 14(2), 295–303.

    Article  PubMed  CAS  Google Scholar 

  47. Ferraris, C., Chevalier, G., Favier, B., Jahoda, C. A., & Dhouailly, D. (2000). Adult corneal epithelium basal cells possess the capacity to activate epidermal, pilosebaceous and sweat gland genetic programs in response to embryonic dermal stimuli. Development, 127(24), 5487–5495.

    PubMed  CAS  Google Scholar 

  48. Lindberg, K., Brown, M. E., Chaves, H. V., Kenyon, K. R., & Rheinwald, J. G. (1993). In vitro propagation of human ocular surface epithelial cells for transplantation. Investigative Ophthalmology & Visual Science, 34(9), 2672–2679.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Shigeru Kinoshita, Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan, for his mentorship in this project and allowing us to adopt his cell cultivation protocols. This work was supported by Center of Excellence in Women’s Health Award, Harvard Medical School (UVJ), New England Corneal Transplant Research Award (UVJ), Massachusetts Lions Eye Research Fund (UVJ), Cornea Donor Research Fund (UVJ and RD).

Disclosures

The authors have no affiliations with any organization or entity having a declared financial or personal interest in the subject matter or materials discussed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ula V. Jurkunas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.M., Fuchsluger, T., Ahmad, S. et al. Comparative Analysis of Human-Derived Feeder Layers with 3T3 Fibroblasts for the Ex Vivo Expansion of Human Limbal and Oral Epithelium. Stem Cell Rev and Rep 8, 696–705 (2012). https://doi.org/10.1007/s12015-011-9319-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9319-6

Keywords

Navigation