Skip to main content

Advertisement

Log in

The role of combined radiation and immunotherapy in breast cancer treatment

  • Review
  • Published:
Journal of Radiation Oncology

Abstract

Background

Interest in harnessing the power of the host immune system to combat breast cancer recently has gained significant momentum. A growing body of evidence suggests that combined radiation therapy (RT) and immunotherapy synergistically activate a systemic immune response.

Methods

A review of original research, pre-clinical, retrospective, and prospective clinical studies was performed to assess the existing evidence to support a role for combined immunoradiotherapy in the treatment of breast cancer.

Results

Substantial evidence supports a synergism in combined immunoradiotherapy approaches. In this role, RT serves not only as a potent mediator of local control but also as an important component of systemic disease control. Actively accruing clinical trials aim to further define the clinical impact of immunoradiotherapeutic approaches in breast cancer.

Conclusions

This review provides an overview of the interplay between RT and emerging oncoimmunotherapy strategies and provides a biological explanation for their synergy in the treatment of breast cancer. More robust nationally funded studies are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Group EBCTC (2011) Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: meta-analysis of individual patient data for 10 801 women in 17 randomised trials. Lancet 378:1707–1716

    Article  Google Scholar 

  2. Ahmed MM, Guha C, Hodge JW, Jaffee E (2014) Immunobiology of radiotherapy: new paradigms. Radiat Res 182:123–125

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Obeid M, Panaretakis T, Joza N et al (2007) Calreticulin exposure is required for the immunogenicity of γ-irradiation and UVC light-induced apoptosis. Cell Death Differ 14:1848–1850

    Article  PubMed  CAS  Google Scholar 

  5. Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059

    Article  PubMed  CAS  Google Scholar 

  6. Ghiringhelli F, Apetoh L, Tesniere A et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β-dependent adaptive immunity against tumors. Nat Med 15:1170–1178

    Article  PubMed  CAS  Google Scholar 

  7. Schaue D, Micewicz ED, Ratikan JA, Xie MW, Cheng G, McBride WH (2015) Radiation and inflammation. In: Seminars in radiation oncology; 2015. Elsevier. p. 4–10

  8. Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC (2014) Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology 3, e28518

    Article  PubMed Central  PubMed  Google Scholar 

  9. Demaria S, Ng B, Devitt ML et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58:862–870

    Article  PubMed  Google Scholar 

  10. Formenti SC, Demaria S (2009) Systemic effects of local radiotherapy. Lancet Oncol 10:718–726

    Article  PubMed Central  PubMed  Google Scholar 

  11. Vatner RE, Formenti SC (2015) Myeloid-derived cells in tumors: effects of radiation. In: Seminars in radiation oncology; 2015. Elsevier. p. 18–27

  12. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  PubMed  CAS  Google Scholar 

  13. Pinedo H, Buter J, Luykx-de Bakker S et al (2003) Extended neoadjuvant chemotherapy in locally advanced breast cancer combined with GM-CSF: effect on tumour-draining lymph node dendritic cells. Eur J Cancer 39:1061–1067

    Article  PubMed  CAS  Google Scholar 

  14. Formenti S, Friedman K, Chao K et al (2008) Abscopal response in irradiated patients: results of a proof of principle trial. Int J Radiat Oncol Biol Phys 72:S6–S7

    Article  Google Scholar 

  15. Apostolopoulos V, Pietersz GA, Tsibanis A et al (2006) Pilot phase III immunotherapy study in early-stage breast cancer patients using oxidized mannan-MUC1 [ISRCTN71711835]. Breast Cancer Res 8:R27

    Article  PubMed Central  PubMed  Google Scholar 

  16. Dewan MZ, Vanpouille-Box C, Kawashima N et al (2012) Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin Cancer Res 18:6668–6678

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Dewan MZ, Galloway AE, Kawashima N et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti–CTLA-4 antibody. Clin Cancer Res 15:5379–5388

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Kwon ED, Drake CG, Scher HI et al (2014) Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 15:700–712

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Azuma T, Yao S, Zhu G, Flies AS, Flies SJ, Chen L (2008) B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 111:3635–3643

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    Article  PubMed  CAS  Google Scholar 

  21. Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455–2465

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Muenst S, Schaerli A, Gao F et al (2014) Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 146:15–24

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Ghebeh H, Barhoush E, Tulbah A, Elkum N, Al-Tweigeri T, Dermime S (2008) FOXP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: implication for immunotherapy. BMC Cancer 8:57

    Article  PubMed Central  PubMed  Google Scholar 

  24. Zhang P, Su D-M, Liang M, Fu J (2008) Chemopreventive agents induce programmed death-1-ligand 1 (PD-L1) surface expression in breast cancer cells and promote PD-L1-mediated T cell apoptosis. Mol Immunol 45:1470–1476

    Article  PubMed  CAS  Google Scholar 

  25. Liyanage UK, Moore TT, Joo H-G et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169:2756–2761

    Article  PubMed  CAS  Google Scholar 

  26. Wang L, Li D, Fu Z, Li H, Jiang W, Li D (2007) Association of CTLA-4 gene polymorphisms with sporadic breast cancer in Chinese Han population. BMC Cancer 7:173

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Robert C, Long GV, Brady B et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330

    Article  PubMed  CAS  Google Scholar 

  29. Wolchok JD, Kluger H, Callahan MK et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122–133

    Article  PubMed  CAS  Google Scholar 

  30. Postow MA, Callahan MK, Barker CA et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366:925–931

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Formenti SC, Demaria S (2013) Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst. djs629

  32. Matsumura S, Wang B, Kawashima N et al (2008) Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol 181:3099–3107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Demaria S, Kawashima N, Yang AM et al (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11:728–734

    PubMed  CAS  Google Scholar 

  34. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-γ production within the tumor microenvironment influences antitumor immunity. J Immunol 180:3132–3139

    Article  PubMed  CAS  Google Scholar 

  35. Leavy O (2015) Immunotherapy: a triple blow for cancer. Nat Rev Cancer 15(5):258–259

    Article  PubMed  CAS  Google Scholar 

  36. Gulley JL, Arlen PM, Bastian A et al (2005) Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11:3353–3362

    Article  PubMed  CAS  Google Scholar 

  37. Park JW, Melisko ME, Esserman LJ, Jones LA, Wollan JB, Sims R (2007) Treatment with autologous antigen-presenting cells activated with the HER-2–based antigen lapuleucel-T: results of a phase I study in immunologic and clinical activity in HER-2–overexpressing breast cancer. J Clin Oncol 25:3680–3687

    Article  PubMed  CAS  Google Scholar 

  38. Mittendorf E, Clifton G, Holmes J et al (2014) Final report of the phase I/II clinical trial of the E75 (nelipepimut-S) vaccine with booster inoculations to prevent disease recurrence in high-risk breast cancer patients. Annals of Oncology mdu211

  39. Le DT, Wang-Gillam A, Picozzi V et al (2015) Safety and survival with GVAX pancreas prime and Listeria monocytogenes–expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol: JCO. 2014.57. 4244

  40. Teh BS, Aguilar-Cordova E, Vlachaki MT et al (2002) Combining radiotherapy with gene therapy (from the bench to the bedside): a novel treatment strategy for prostate cancer. Oncologist 7:458–466

    Article  PubMed  CAS  Google Scholar 

  41. Kawashita Y, Ohtsuru A, Kaneda Y et al (1999) Regression of hepatocellular carcinoma in vitro and in vivo by radiosensitizing suicide gene therapy under the inducible and spatial control of radiation. Hum Gene Ther 10:1509–1519

    Article  PubMed  CAS  Google Scholar 

  42. Stevens CW, Zeng M, Cerniglia GJ (1996) Ionizing radiation greatly improves gene transfer efficiency in mammalian cells. Hum Gene Ther 7:1727–1734

    Article  PubMed  CAS  Google Scholar 

  43. Teh BS, Aguilar-Cordova E, Kernen K et al (2001) Phase I/II trial evaluating combined radiotherapy and in situ gene therapy with or without hormonal therapy in the treatment of prostate cancer—a preliminary report. Int J Radiat Oncol Biol Phys 51:605–613

    Article  PubMed  CAS  Google Scholar 

  44. Teh BS, Ayala G, Aguilar L et al (2004) Phase I–II trial evaluating combined intensity-modulated radiotherapy and in situ gene therapy with or without hormonal therapy in treatment of prostate cancer—interim report on PSA response and biopsy data. Int J Radiat Oncol Biol Phys 58:1520–1529

    Article  PubMed  CAS  Google Scholar 

  45. Fujita T, Teh BS, Timme TL et al (2006) Sustained long-term immune responses after in situ gene therapy combined with radiotherapy and hormonal therapy in prostate cancer patients. Int J Radiat Oncol Biol Phys 65:84–90

    Article  PubMed  CAS  Google Scholar 

  46. Ayala G, Satoh T, Li R et al (2006) Biological response determinants in HSV-tk+ ganciclovir gene therapy for prostate cancer. Mol Ther 13:716–728

    Article  PubMed  CAS  Google Scholar 

  47. Chhikara M, Huang H, Vlachaki MT et al (2001) Enhanced therapeutic effect of HSV-tk+GCV gene therapy and ionizing radiation for prostate cancer. Mol Ther 3:536–542

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

No source of funding is associated with this article.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Farach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farach, A., Farach-Carson, M.C., Butler, E.B. et al. The role of combined radiation and immunotherapy in breast cancer treatment. J Radiat Oncol 4, 347–354 (2015). https://doi.org/10.1007/s13566-015-0216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13566-015-0216-5

Keywords

Navigation