Skip to main content

Advertisement

Log in

Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Recent studies in multiple epithelial cancers have shown that the inhibitory receptor programmed cell death 1 (PD-1) is expressed on tumor-infiltrating lymphocytes and/or programmed death ligand 1 (PD-L1) is expressed on tumor cells, suggesting that antitumor immunity may be modulated by the PD-1/PD-L1 signaling pathway. In addition, phase 1 clinical trials with monoclonal antibodies targeting PD-1 or PD-L1 have shown promising results in several human cancers. The purpose of this study was to investigate the impact of PD-L1 expression in human breast cancer specimens. We conducted an immunohistochemistry study using a tissue microarray encompassing 650 evaluable formalin-fixed breast cancer cases with detailed clinical annotation and outcomes data. PD-L1 was expressed in 152 (23.4 %) of the 650 breast cancer specimens. Expression was significantly associated with age, tumor size, AJCC primary tumor classification, tumor grade, lymph node status, absence of ER expression, and high Ki-67 expression. In univariate analysis, PD-L1 expression was associated with a significantly worse OS. In multivariate analysis, PD-L1 expression remained an independent negative prognostic factor for OS. In subset analyses, expression of PD-L1 was associated with significantly worse OS in the luminal B HER2 subtype, the luminal B HER2+ subtype, the HER2 subtype, and the basal-like subtype. This is the first study to demonstrate that PD-L1 expression is an independent negative prognostic factor in human breast cancer. This finding has important implications for the application of antibody therapies targeting the PD-1/PD-L1 signaling pathway in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dermime S et al (2004) Vaccine and antibody-directed T cell tumour immunotherapy. Biochim Biophys Acta 1704(1):11–35

    CAS  PubMed  Google Scholar 

  2. Bour-Jordan H et al (2011) Intrinsic and extrinsic control of peripheral T-cell tolerance by costimulatory molecules of the CD28/B7 family. Immunol Rev 241(1):180–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mueller DL, Jenkins MK, Schwartz RH (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7:445–480

    Article  CAS  PubMed  Google Scholar 

  4. Liang SC et al (2003) Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 33(10):2706–2716

    Article  CAS  PubMed  Google Scholar 

  5. Probst HC et al (2005) Resting dendritic cells induce peripheral CD8 + T cell tolerance through PD-1 and CTLA-4. Nat Immunol 6(3):280–286

    Article  CAS  PubMed  Google Scholar 

  6. Keir ME et al (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    Article  CAS  PubMed  Google Scholar 

  7. Flies DB et al (2011) Blockade of the B7-H1/PD-1 pathway for cancer immunotherapy. Yale J Biol Med 84(4):409–421

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Latchman Y et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2(3):261–268

    Article  CAS  PubMed  Google Scholar 

  9. Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Konishi J et al (2004) B7-H1 expression on non-small cell lung cancer cells and its relationship with tumor-infiltrating lymphocytes and their PD-1 expression. Clin Cancer Res 10(15):5094–5100

    Article  CAS  PubMed  Google Scholar 

  11. Nomi T et al (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13(7):2151–2157

    Article  CAS  PubMed  Google Scholar 

  12. Ohigashi Y et al (2005) Clinical significance of programmed death-1 ligand-1 and programmed death-1 ligand-2 expression in human esophageal cancer. Clin Cancer Res 11(8):2947–2953

    Article  CAS  PubMed  Google Scholar 

  13. Strome SE et al (2003) B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 63(19):6501–6505

    CAS  PubMed  Google Scholar 

  14. Iwai Y et al (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99(19):12293–12297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Dong H et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8(8):793–800

    CAS  PubMed  Google Scholar 

  16. Thompson RH et al (2007) PD-1 is expressed by tumor-infiltrating immune cells and is associated with poor outcome for patients with renal cell carcinoma. Clin Cancer Res 13(6):1757–1761

    Article  CAS  PubMed  Google Scholar 

  17. Thompson RH et al (2004) Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci USA 101(49):17174–17179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Blank C, Gajewski TF, Mackensen A (2005) Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunol Immunother 54(4):307–314

    Article  CAS  PubMed  Google Scholar 

  19. Morse MA et al (2005) Recent developments in therapeutic cancer vaccines. Nat Clin Pract Oncol 2(2):108–113

    Article  CAS  PubMed  Google Scholar 

  20. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10(9):909–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Li B et al (2009) Anti-programmed death-1 synergizes with granulocyte macrophage colony-stimulating factor–secreting tumor cell immunotherapy providing therapeutic benefit to mice with established tumors. Clin Cancer Res 15(5):1623–1634

    Article  CAS  PubMed  Google Scholar 

  22. Wang W et al (2009) PD1 blockade reverses the suppression of melanoma antigen-specific CTL by CD4 + CD25(Hi) regulatory T cells. Int Immunol 21(9):1065–1077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Mangsbo SM et al (2010) Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy. J Immunother 33(3):225–235

    Article  CAS  PubMed  Google Scholar 

  24. Brahmer JR et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28(19):3167–3175

    Article  CAS  PubMed  Google Scholar 

  25. Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Berger R et al (2008) Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res 14(10):3044–3051

    Article  CAS  PubMed  Google Scholar 

  27. Hamid O et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369(2):134–144

    Article  CAS  PubMed  Google Scholar 

  28. Brahmer JR et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Jemal A et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    Article  PubMed  Google Scholar 

  30. Liyanage UK et al (2002) Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol 169(5):2756–2761

    Article  CAS  PubMed  Google Scholar 

  31. Droeser R et al (2012) Differential pattern and prognostic significance of CD4+ , FOXP3+ and IL-17+ tumor infiltrating lymphocytes in ductal and lobular breast cancers. BMC Cancer 12:134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Czerniecki BJ et al (2007) Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res 67(4):1842–1852

    Article  CAS  PubMed  Google Scholar 

  33. Ghebeh H et al (2008) FOXP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: implication for immunotherapy. BMC Cancer 8:57

    Article  PubMed Central  PubMed  Google Scholar 

  34. Ghebeh H et al (2006) The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia 8(3):190–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Muenst S et al (2013) The presence of programmed death 1 (PD-1)-positive tumor-infiltrating lymphocytes is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 139(3):667–676

    Article  CAS  PubMed  Google Scholar 

  36. Goldhirsch A et al (2011) Strategies for subtypes–dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22(8):1736–1747

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ghebeh H et al (2007) Expression of B7-H1 in breast cancer patients is strongly associated with high proliferative Ki-67-expressing tumor cells. Int J Cancer 121(4):751–758

    Article  CAS  PubMed  Google Scholar 

  38. Hasan A et al (2011) Therapeutic targeting of B7-H1 in breast cancer. Expert Opin Ther Targets 15(10):1211–1225

    Article  CAS  PubMed  Google Scholar 

  39. Schalper K.A et al (2014) In situ tumor PD-L1 mRNA expression is associated with increased TILs and better outcome in breast carcinomas. Clin Cancer Res

  40. McShane LM et al (2006) Reporting recommendations for tumor marker prognostic studies (remark). Exp Oncol 28(2):99–105

    CAS  PubMed  Google Scholar 

  41. Bubendorf L et al (2001) Tissue microarray (TMA) technology: miniaturized pathology archives for high-throughput in situ studies. J Pathol 195(1):72–79

    Article  CAS  PubMed  Google Scholar 

  42. McCarty KS Jr et al (1985) Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch Pathol Lab Med 109(8):716–721

    PubMed  Google Scholar 

  43. Tapia C et al (2004) HER2 analysis in breast cancer: reduced immunoreactivity in FISH non-informative cancer biopsies. Int J Oncol 25(6):1551–1557

    CAS  PubMed  Google Scholar 

  44. Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  45. Prat A, Perou CM (2011) Deconstructing the molecular portraits of breast cancer. Mol Oncol 5(1):5–23

    Article  CAS  PubMed  Google Scholar 

  46. Blows FM et al (2010) Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 7(5):e1000279

    Article  PubMed Central  PubMed  Google Scholar 

  47. Soliman H, Khalil F, Antonia S (2014) PD-L1 Expression Is Increased in a Subset of Basal Type Breast Cancer Cells. PLoS ONE 9(2):e88557

    Article  PubMed Central  PubMed  Google Scholar 

  48. Velcheti V et al (2014) Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest 94(1):107–116

    Article  CAS  PubMed  Google Scholar 

  49. Taube JM et al (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4(127):127–137

    Article  Google Scholar 

  50. Lipson EJ et al (2013) PD-L1 expression in the Merkel cell carcinoma microenvironment: Association with inflammation, Merkel cell polyomavirus and overall survival. Cancer Immunol Res 1

  51. Droeser RA et al (2013) Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J Cancer 49(9):2233–2242

    Article  CAS  PubMed  Google Scholar 

  52. Zang X, Allison JP (2007) The B7 family and cancer therapy: costimulation and coinhibition. Clin Cancer Res 13(18 Pt 1):5271–5279

    Article  CAS  PubMed  Google Scholar 

  53. Hino R et al (2010) Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma. Cancer 116(7):1757–1766

    Article  PubMed  Google Scholar 

  54. Mu CY et al (2011) High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor infiltrating dendritic cells maturation. Med Oncol 28(3):682–688

    Article  CAS  PubMed  Google Scholar 

  55. Song M et al (2013) PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS ONE 8(6):e65821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Seo SK et al (2006) Co-inhibitory role of T-cell-associated B7-H1 and B7-DC in the T-cell immune response. Immunol Lett 102(2):222–228

    Article  CAS  PubMed  Google Scholar 

  57. Cariani E et al (2012) Immunological and molecular correlates of disease recurrence after liver resection for hepatocellular carcinoma. PLoS ONE 7(3):e32493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support of the Biostatistics Core, Siteman Comprehensive Cancer Center WUSM, and NCI Cancer Center Support Grant P30 CA091842.

We thank Professor Alexandar Tzankov for his contribution to the development of the PD-L1 immunohistochemical assay as well as his valuable insights and critical review of the manuscript. We also thank Professor Giulio Spagnoli for his support and critical evaluation of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Muenst.

Additional information

S. Muenst and A. R. Schaerli have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muenst, S., Schaerli, A.R., Gao, F. et al. Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 146, 15–24 (2014). https://doi.org/10.1007/s10549-014-2988-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-2988-5

Keywords

Navigation