Skip to main content
Log in

Detection of pea wilt pathogen Fusarium oxysporum f. sp. pisi using DNA-based markers

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Identification of the fungus Fusarium oxysporum f. sp. pisi (Fop), the causal organism of wilt disease of pea, is a time consuming and arduous task. Diagnosis of Fop by traditional means requires more than 2 months and involves two steps, identification of species using morphological characters and formae specialispisi’ using pathogenicity assays. The ambiguous morphological differences between F. solani and F. oxysporum further complicate the diagnosis of F. oxysporum. A polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) based method was developed to detect Fop from India. A PCR–RFLP marker, HPACAPS1380, generated after restriction of 28S rDNA region with enzyme MvaI, detected accurately the Fop among several other fungi with detection sensitivity of 5 fg of Fop genomic DNA. In a mixture of Fop and pea DNA, the sensitivity was 500 pg of Fop DNA in 50 ng of pea DNA. The assay was further refined to detect the Fop from infected tissues and infested soil. The current assay can detect Fop from culture, plant tissues and soil in a considerably shorter period of time compared to traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CTAB:

Cetyltrimethylammonium bromide

dNTP:

Deoxynucleotide triphosphate

EDTA:

Ethylenediamine tetraacetic acid

fg:

Fentagram

Fsp :

Fusarium solani f. sp. pisi

IGS:

Intergenic spacer

ITS:

Internal transcribed spacer

PCR–RFLP:

Polymerase chain reaction–restriction fragment length polymorphism

rDNA:

Ribosomal DNA

References

  • Abd-Elsalam KA, Aly IN, Abdel-Satar MA, Khalil MS, Verreet JA (2003) PCR identification of Fusarium genus based on nuclear ribosomal-DNA sequence data. Afr J Biotech 2:82–85

    Article  Google Scholar 

  • Al-Hatmi AM, Mirabolfathy M, Hagen F, Normand AC, Stielow JB, Karami-Osbo R, van Diepeningen AD, Meis JF, de Hoog GS (2016) DNA barcoding, MALDI-TOF, and AFLP data support Fusarium ficicrescens as a distinct species within the Fusarium fujikuroi species complex. Fungal Biol 120:265–278

    Article  PubMed  CAS  Google Scholar 

  • Armstrong GM, Armstrong JK (1981) Another approach to race classification of Fusarium oxysporum f. sp. pisi. Phytopathology 71:474–478

    Article  Google Scholar 

  • Babu BK, Sharma R (2015) TaqMan real-time PCR assay for the detection and quantification of Sclerospora graminicola, the causal agent of pearl millet downy mildew. Eur J Plant Pathol 142:149–158

    Article  CAS  Google Scholar 

  • Bashyal BM, Aggarwal R, Sharma S, Gupta S, Rawat K, Singh D, Singh AK, Krishnan SG (2016) Occurrence, identification and pathogenicity of Fusarium species associated with bakanae disease of basmati rice in India. Eur J Plant Pathol 144:457–466

    Article  CAS  Google Scholar 

  • Cenis JL (1992) Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res 20:2380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiocchetti A, Sciaudone L, Durando F, Garibaldi A, Migheli Q (2001) PCR detection of Fusarium oxysporum f. sp. basilici on basil. Plant Dis 85:607–611

    Article  CAS  Google Scholar 

  • Crutcher FK, Doan HK, Bell AA, Davis RM, Stipanovic RD, Nichols RL, Liu J (2016) Evaluation of methods to detect the cotton wilt pathogen Fusarium oxysporum f. sp. vasinfectum race 4. Eur J Plant Pathol 144:225–230

    Article  CAS  Google Scholar 

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microbiol 61:1323–1330

    PubMed  PubMed Central  CAS  Google Scholar 

  • Huang CH, Tsai RT, Vallad GE (2016) Development of a taqman Real-Time polymerase chain reaction assay for detection and quantification of Fusarium oxysporum f. sp. lycopersici in soil. J Phytopathol. https://doi.org/10.1111/jph.12471

    Article  Google Scholar 

  • Hysek J, Kreuzman J, Brozova J (2002) Reaction of pea selections to Fusarium oxysporum f. sp. pisi (races 1, 2, 5, 6) and Fusarium solani. Plant Prot Sci 38:561–564

    Google Scholar 

  • Irinyi L, Lackner M, de Hoog GS, Meyer W (2016) DNA barcoding of fungi causing infections in humans and animals. Fungal Biol 120:125–136

    Article  PubMed  CAS  Google Scholar 

  • Klemsdal SS, Herrero ML, Wanner LA, Lund G, Hermansen A (2008) PCR-based identification of Pythium spp. causing cavity spot in carrots and sensitive detection in soil samples. Plant Pathol 57:877–886

    Article  CAS  Google Scholar 

  • Komada H (1975) Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soils. Rev Plant Prot Res 8:114–125

    Google Scholar 

  • Langrell SRH, Glen M, Alfenas AC (2008) Molecular diagnosis of Puccinia psidii (guava rust)—a quarantine threat to Australian eucalypt and Myrtaceae biodiversity. Plant Pathol 57:687–701

    Article  CAS  Google Scholar 

  • Laurence MH, Howard C, Summerell BA, Liew ECY (2016) Identification of Fusarium solani f. sp. phalaenopsis in Australia. Aust Plant Dis Notes 11:1–3

    Article  CAS  Google Scholar 

  • Lin YH, Chang JY, Liu ET, Chao CP, Huang JW, Chang PL (2009) Development of a molecular marker for specific detection of Fusarium oxysporum f. sp. cubense race 4. Eur J Plant Pathol 123:353–565

    Article  CAS  Google Scholar 

  • Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28. https://doi.org/10.1186/1471-2180-5-28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra RK, Pandey BK, Singh V, Mathew AJ, Pathak N, Zeeshan M (2013) Molecular detection and genotyping of Fusarium oxysporum f. sp. psidii isolates from different agro-ecological regions of India. J Microbiol 51:405–412

    Article  PubMed  Google Scholar 

  • Okubara PA, Harrison LA, Gatch EW, Vandemark G, Schroeder KL, du Toit LJ (2013) Development and evaluation of a TaqMan real-time PCR assay for Fusarium oxysporum f. sp. spinaciae. Plant Dis 97:927–937

    Article  CAS  Google Scholar 

  • Pasquali M, Dematheis F, Gullino ML, Garibaldi A (2007) Identification of race 1 of Fusarium oxysporum f. sp. lactucae on lettuce by inter-retrotransposon sequence-characterized amplified region technique. Phytopathology 97:987–996

    Article  PubMed  CAS  Google Scholar 

  • Pavón CF, Babadoost M, Lambert KN (2008) Quantification of Phytophthora capsici oospores in soil by sieving-centrifugation and real-time polymerase chain reaction. Plant Dis 92:143–149

    Article  CAS  Google Scholar 

  • Peng J, Zhang H, Chen F, Zhang X, Xie Y, Hou X, Li G, Pu J (2014) Rapid and quantitative detection of Fusarium oxysporum f. sp. cubense race 4 in soil by real-time fluorescence loop-mediated isothermal amplification. J Appl Microbiol 117:1740–1749

    Article  PubMed  CAS  Google Scholar 

  • Priyanka K, Dubey SC, Singh AK (2015) Conventional and real-time PCR assays for specific detection and quantification of Fusarium oxysporum f. sp. ciceris in plants using intergenic spacer region-based marker. Biologia 70:314–319

    Article  CAS  Google Scholar 

  • Rana U, Sharma A, Paul YS, Sharma KD (2009) Survey for pea diseases and identification of fungi associated with wilt/root rot complex in Himachal Pradesh, a major off season pea growing state. J Mycol Plant Pathol 39:416–421

    Google Scholar 

  • Saghai-Maroof MA, Soliman K, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasaki K, Nakahara K, Shigyo M, Tanaka S, Ito SI (2015) Detection and quantification of onion isolates of Fusarium oxysporum f. sp. cepae in onion plant. J Gen Plant Pathol 81:232–236

    Article  CAS  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW, Miller AN (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci USA 109:6241–6246

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma KD, Winter P, Kahl G, Muehlbauer FJ (2004) Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor Appl Genet 108:1243–1248

    Article  PubMed  CAS  Google Scholar 

  • Sharma KD, Chen W, Muehlbauer FJ (2005) Genetics of chickpea resistance to five races of Fusarium wilt and a concise set of race differentials for Fusarium oxysporum f. sp. ciceris. Plant Dis 89:385–390

    Article  Google Scholar 

  • Sousa MV, Machado JDC, Simmons HE, Munkvold GP (2015) Real-time quantitative PCR assays for the rapid detection and quantification of Fusarium oxysporum f. sp. phaseoli in Phaseolus vulgaris (common bean) seeds. Plant Pathol 64:478–488

    Article  CAS  Google Scholar 

  • White TJ, Bruns SL, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Xue AG (2003) Biological control of pathogens causing root rot complex in field pea using Clonostachys rosea strain ACM941. Phytopathology 93:329–335

    Article  PubMed  Google Scholar 

  • Yang LL, Sun LX, Ruan XL, Qiu DY, Chen DH, Cai XQ, Li HP (2015) Development of a single-tube duplex real-time fluorescence method for the rapid quantitative detection of Fusarium oxysporum f. sp. cubense race 1 (FOC1) and race 4 (FOC4) using TaqMan probes. Crop Prot 68:27–35

    Article  CAS  Google Scholar 

  • Zambounis AG, Paplomatas E, Tsaftaris AS (2007) Intergenic spacer–RFLP analysis and direct quantification of Australian Fusarium oxysporum f. sp. vasinfectum isolates from soil and infected cotton tissues. Plant Dis 91:1564–1573

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial grant received from the Department of Biotechnology, GOI, New Delhi to carry out the present study. We also thank Dr. S. Pande, International Crop Research Centre for Semi-Arid Tropics, Pattencheru, Hyderabad, for isolates of F. oxysporum f. sp. ciceris and Dr. Patil from University of Agricultural Sciences and Technology, Rahuri, Maharashtra for isolates of F. oxysporum f. sp. ciceris and F. oxysporum f. sp. udum and Dr. Anita Gotmore, Division of Crop Improvement, Central Institute for Cotton Research, Shankarnagar, Nagpur, Maharashtra for isolates of F. oxysporum f. sp. vasinfectum.

Funding

This study was funded partially by Grant No. BT/PR5599/AGR/02/282/2004 from Department of Biotechnology, Government of India, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Dev Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.D., Hemlata, Rathour, R. et al. Detection of pea wilt pathogen Fusarium oxysporum f. sp. pisi using DNA-based markers. J. Plant Biochem. Biotechnol. 27, 342–350 (2018). https://doi.org/10.1007/s13562-018-0443-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-018-0443-0

Keywords

Navigation