Skip to main content
Log in

Regulatory sequences of the Arabidopsis thaliana Rps19, a nuclear gene encoding mitochondrial ribosomal protein subunit, extend into the upstream gene

  • Original Article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Genes encoding subunits of the mitochondrial ribosomal protein complex are distributed between the mitochondrial and nuclear genomes. In Arabidopsis thaliana only seven out of the nearly 70 genes coding for mitochondrial ribosomal subunit proteins are present in the mitochondrial genome. Nevertheless, these genes are co-ordinately expressed. Here, we present the first report of characterization of promoter of a plant mitochondrial ribosomal protein gene AtRps19 (At5g47320), a single copy nuclear gene in A. thaliana. Analysis of transgenic A. thaliana plants carrying seven different AtRps19 upstream fragments linked to the uidA reporter gene revealed that the 879 bp fragment containing the 5′ UTR and the intergenic region is capable of driving gene expression in most of the vegetative tissues. However, inclusion of 447 bp of the upstream gene sequences was essential for obtaining full expression in all tissues including anthers and pollen. Thus, we provide the first experimental proof of overlapping genes in plants. qRT-PCR analysis showed that uidA and native AtRps19 transcript levels were comparable in plants carrying the D4 (−676/+650) construct, indicating that the 1326 bp D4 fragment represents the native promoter of the AtRps19 gene. Comparison of AtRps19 promoter with the widely used CaMV35S promoter showed that AtRps19 promoter is capable of driving gene expression in all tissues including anthers and pollen but was less efficient than the CaMV35S promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Rps19 :

Gene for ribosomal protein S19 (nucleus encoded)

MRPs:

Mitochondrial ribosomal proteins

Mt:

Mitochondria(l)

GUS:

β-Glucuronidase

UTR:

Untranslated region

Bp:

Base pair(s)

TSS:

Transcription start site

References

  • Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content, gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395

    Article  CAS  PubMed  Google Scholar 

  • Baurle I, Laux T (2005) Regulation of WUSCHEL transcription in the stem cell niche of the Arabidopsis shoot meristem. Plant Cell 17:2271–2280

    Article  PubMed  PubMed Central  Google Scholar 

  • Bondino HG, Valle EM (2009) A small intergenic region drives exclusive tissue–specific expression of the adjacent genes in Arabidopsis thaliana. BMC Mol Biol. doi:10.1186/1471-2199-10-95

    PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium–mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Coutu C, Brandle J, Brown D, Brown K, Miki B, Simmonds J, Hegedus DD (2007) pORE, a modular binary vector series suited for both monocot and dicot plant transformation. Transgenic Res 16:771–781

    Article  CAS  PubMed  Google Scholar 

  • Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S 2 promoter. Transgenic Res 4:388–396

    Article  CAS  PubMed  Google Scholar 

  • Figueroa P, Gomez I, Holuigue L, Araya A, Jordana X (1999) Transfer of rps14 from the mitochondrion to the nucleus in maize implied integration within a gene encoding the iron–sulphur subunit of succinate dehydrogenase and expression by alternative splicing. Plant J 18:601–609

    Article  CAS  PubMed  Google Scholar 

  • Giege P, Sweetlove LJ, Cognat V, Leaver CJ (2005) Coordination of nuclear and mitochondrial genome expression during mitochondrial biogenesis in Arabidopsis. Plant Cell 17:1497–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray MW, Burger G, Lang BF (2001) The origin and early evolution of mitochondria. Genome Biol 2(6):1018.1–1018.5

    Article  Google Scholar 

  • Hernandez N (1993) TBP, a universal eukaryotic transcription factor? Genes Dev 7:1291–1308

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis–acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta–analysis of transcriptomes. Bioinformatics. doi:10.1155/2008/420747

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 13:3901–3907

    Google Scholar 

  • Jeong YM, Mun JH, Lee I, Woo JC, Hong CB, Kim SG (2006) Distinct roles of the first introns on the expression of Arabidopsis profilin gene family members. Plant Physiol 140:196–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a novel DNA–binding protein, binds to bipartite recognition sequence through two distinct DNA–binding domains uniquely found in higher plants. Nucleic Acids Res 15:470–478

    Article  Google Scholar 

  • Krom N, Ramakrishna W (2008) Comparative analysis of divergent and convergent gene pairs and their expression patterns in rice, Arabidopsis and Populus. Plant Physiol 147:1763–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubo N, Harada K, Hirai A, Kadowaki KI (1999) A single nuclear transcript encoding mitochondrial RPS14 and SDHB of rice is processed by alternative splicing: common use of the same mitochondrial targeting signal for different proteins. Proc Natl Acad Sci USA 96:9207–9211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwasniak M, Majewski P, Skibior R, Adamowicz A, Czarna M, Sliwinska E, Janska H (2013) Silencing of the nuclear RPS10 gene encoding mitochondrial ribosomal protein alters translation in Arabidopsis mitochondria. Plant Cell 25:1855–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam E, Chua NH (1989) ASF–2: a factor that binds to the Cauliflower Mosaic Virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell 1:1147–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) Plant CARE, a database of plant cis–acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 301:325–327

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real–time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mascarenhas D, Mettler IJ, Pierce DA, Lowe HW (1990) Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol 15:913–920

    Article  CAS  PubMed  Google Scholar 

  • Mitra A, Han J, Zhang ZJ, Mitra A (2009) The intergenic region of Arabidopsis thalianacab1 and cab2 divergent genes functions as a bidirectional promoter. Planta 229:1015–1022

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Rogers HJ, Bate N, Combe J, Sullivan J, Sweetman J, Swan C, Lonsdale DM, Twell D (2001) Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Mol Biol 45:577–585

    Article  CAS  PubMed  Google Scholar 

  • Rose A, Elfersi T, Parra G, Korf I (2008) Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that enhance gene expression. Plant Cell 20:543–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez H, Fester T, Kloska S, Schroder W, Schuster W (1996) Transfer of rps19 to the nucleus involves the gain of an RNP–binding motif which may functionally replace RPS13 in Arabidopsis mitochondria. EMBO J 15:2138–2149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandoval P, León G, Gómez I, Carmona R, Figueroa P, Holuigue L, Araya A, Jordana X (2004) Transfer of RPS14 and RPL5 from the mitochondrion to the nucleus in grasses. Gene 324:139–147

    Article  CAS  PubMed  Google Scholar 

  • Sormani R, Masclaux-Daubresse C, Daniele-Vedele F, Chardon F (2011) Transcriptional regulation of ribosome components are determined by stress according to cellular compartments in Arabidopsis thaliana. PLoS ONE. doi:10.1371/journal.pone.0028070

    Google Scholar 

  • Sunilkumar G, Mohr L, Lopata-Finch E, Emani C, Rathore KS (2002) Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Mol Biol 50:463–474

    Article  CAS  PubMed  Google Scholar 

  • Trémousaygue D, Garnier L, Bardet C, Dabos P, Hervé C, Lescure B (2003) Internal telomeric repeats and ‘TCP domain’ protein-binding sites co-operate to regulate gene expression in Arabidopsis thaliana cycling cells. Plant J 33:957–966

    Article  PubMed  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366, 924 nucleotides. Nat Genet 15:57–61

    Article  CAS  PubMed  Google Scholar 

  • Wang X-J, Gaasterland T, Chua N-H (2005) Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 6(4):R30. doi:10.1186/gb-2005-6-4-r30

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang Y, Wang Z, Liu L, Zhu XZ, Ma X (2011) Synchronization of cytoplasmic and transferred mitochondrial ribosomal protein gene expression in land plants is linked to Telo-box motif enrichment. BMC Evol Biol. doi:10.1186/1471-2148-11-161

    Google Scholar 

  • Wilkinson JE, Twell D, Lindsey K (1997) Activities of CaMV 35S and nos promoters in pollen: implications for field release of transgenic plants. J Exp Bot 48:265–275

    Article  CAS  Google Scholar 

  • Williams EJ, Bowles DJ (2004) Coexpression of neighboring genes in the genome of Arabidopsis thaliana. Genome Res 14:1060–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE. doi:10.1371/journal.pone.0000718

    Google Scholar 

Download references

Acknowledgements

Suman Lata received CSIR-JRF from the Council of Scientific and Industrial Research, New Delhi, and Aashish Ranjan and Neetu Singh Kushwah received ICAR-JRF from the Indian Council of Agricultural Research, New Delhi. We thank National Phytotron Facility, IARI, New Delhi, for providing space to grow Arabidopsis plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shripad Ramachandra Bhat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lata, S., Ranjan, A., Kushwah, N.S. et al. Regulatory sequences of the Arabidopsis thaliana Rps19, a nuclear gene encoding mitochondrial ribosomal protein subunit, extend into the upstream gene. J. Plant Biochem. Biotechnol. 26, 302–309 (2017). https://doi.org/10.1007/s13562-016-0392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-016-0392-4

Keywords

Navigation