Skip to main content
Log in

The intergenic region of Arabidopsis thaliana cab1 and cab2 divergent genes functions as a bidirectional promoter

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Genetic engineering plays a unique role in fundamental plant biology studies and in improving crop traits. These efforts often necessitate introduction and expression of multiple genes using promoters from a very limited repertoire. Current common practice of expressing multiple genes is the repeated use of the same or similar promoters. This practice causes more frequent transgene silencing due to a high degree of sequence homology and a greater chance of rearrangement among repeatedly used promoter sequences. Therefore, availability and use of natural bidirectional promoters to minimize gene silencing and achieve desirable expression pattern of transgenes is a critical issue in the field of plant genetic engineering. Here we describe the use of a single natural bidirectional promoter to drive the expression of two reporter genes in onion epidermal cells and in transgenic tobacco plants. We show that (1) the promoter drives the simultaneous expression of GUS and GFP reporter genes after transient expression and stable transformation, (2) the transcription is equally strong in both directions, (3) immediate upstream regions in each direction control transcription independently from each other, and (4) the reporter genes are expressed in leaves and stems but not in roots, as expected from the fact that the endogenous promoter controls the expression of two photosynthetic genes in Arabidopsis. Hence, use of bidirectional promoters in heterologous background provides a means to express multiple genes in transgenic plants and aids genetic engineering-based crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Cab :

Chlorophyll a/b-binding protein

GUS:

β-Glucuronidase

GFP:

Green-fluorescent protein

URE:

Upstream regulatory elements

References

  • Adachi N, Lieber MR (2002) Bidirectional gene organization: a common architectural feature of the human genome. Cell 109:807–809

    Article  PubMed  CAS  Google Scholar 

  • An G (1987) Integrated regulation of the photosynthetic gene family from Arabidopsis thaliana in transformed tobacco. Mol Gen Genet 207:210–216

    Article  CAS  Google Scholar 

  • An G, Ebert PR, Mitra A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, pp 1–19

    Google Scholar 

  • Aoyama T, Chua NH (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11:605–612

    Article  PubMed  CAS  Google Scholar 

  • Arguello-Astorga G, Herrera-Estrella L (1998) Evolution of light-regulated plant promoters. Annu Rev Plant Physiol Plant Mol Biol 49:525–555

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Chua NH (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  PubMed  CAS  Google Scholar 

  • Carre IA, Kay SA (1995) Multiple DNA–protein complexes at a circadian-regulated promoter element. Plant Cell 7:2039–2051

    Article  PubMed  CAS  Google Scholar 

  • Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138:179–207

    Article  PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi CP, Sawant SV, Kiran K, Mehrotra R, Lodhi N, Ansari SA, Tuli R (2006) Analysis of polarity in the expression from a multifactorial bidirectional promoter designed for high-level expression of transgenes in plants. J Biotechnol 123:1–12

    Article  PubMed  CAS  Google Scholar 

  • Cho TJ, Davies CS, Nielsen NC (1989) Inheritance and organization of glycinin genes in soybean. Plant Cell 1:329–337

    Article  PubMed  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol 18:675–689

    Article  PubMed  CAS  Google Scholar 

  • Colbert JT, Held BM, Wurtele ES, Dietrich PS (1997) Root preferential promoter. United States Patent 5(633):363

    Google Scholar 

  • Conner TW (1997) TFM7 and TFM9, promoters for expression of a gene of choice in fruits such as tomato; DNA molecules, plant cells and plants containing them. United States Patent 5(608):150

    Google Scholar 

  • Deveaux Y, Peaucelle A, Roberts GR, Coen E, Simon R, Mizukami Y, Traas J, Murray JAH, Doonan JH, Laufs P (2003) The ethanol switch: a tool for tissue-specific gene induction during plant development. Plant J 36:818–930

    Article  Google Scholar 

  • Fagard M, Vaucheret H (2000) Transgene silencing in plants: how many mechanisms? Annu Rev Plant Physiol Plant Mol Biol 51:167–194

    Article  PubMed  CAS  Google Scholar 

  • Frey PM, Scharer-Hernandez NG, Futterer J, Potrykus I, Puonti-Kaerlas J (2001) Simultaneous analysis of the bidirectional African cassava mosaic virus promoter activity using two different luciferase genes. Virus Genes 22:231–242

    Article  PubMed  CAS  Google Scholar 

  • Gallagher SR (1992) GUS protocols: using the GUS gene as a reporter of gene expression. Academic Press, San Diego

    Google Scholar 

  • Gidoni D, Bond-Nutter D, Brosio P, Jones J, Bedbrook J, Dunsmuir P (1988) Coordinated expression between two photosynthetic petunia genes in transgenic plants. Mol Gen Genet 211:507–514

    Article  CAS  Google Scholar 

  • Ha SB, An G (1988) Identification of upstream regulatory elements involved in the developmental expression of the Arabidopsis thaliana cab1 gene. Proc Natl Acad Sci USA 85:8017–8021

    Article  PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and T region of the Agrobacterium tumefaciens Ti plasmid. Nature 303:179–181

    Article  CAS  Google Scholar 

  • Jefferson A, Kavanagh TA, Bevan M (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Keddie JS, Tsiantis M, Piffanelli P, Cella R, Hatzopoulos P, Murphy DJ (1994) A seed-specific Brassica napus oleosin promoter interacts with a G-box-specific protein and may be bi-directional. Plant Mol Biol 24:327–340

    Article  PubMed  CAS  Google Scholar 

  • Krom N, Ramakrishna W (2008) Comparative analysis of divergent and convergent gene pairs and their expression patters in rice, Arabidopsis, and Populus. Plant Physiol 147:1763–1773

    Article  PubMed  CAS  Google Scholar 

  • Lam E, Benfey PN, Gilmartin PM, Fang RX, Chua NH (1989) Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci USA 86:7890–7894

    Article  PubMed  CAS  Google Scholar 

  • Langridge WHR, Fitzgerald KJ, Koncz C, Schell J, Szalay AA (1989) Dual promoter of Agrobacterium tumefaciens mannopine synthase genes is regulated by plant growth hormones. Proc Natl Acad Sci USA 86:3219–3223

    Article  PubMed  CAS  Google Scholar 

  • Leutwiler LS, Meyerowitz EM, Tobin EM (1986) Structure and expression of three light-harvesting chlorophyll a/b-binding protein genes of Arabidopsis thaliana. Nucleic Acids Res 14:4051–4064

    Article  PubMed  CAS  Google Scholar 

  • Li ZT, Jayasankar S, Gray DJ (2004) Bi-directional duplex promoters with duplicated enhancers significantly increase transgene expression in grape and tobacco. Transgenic Res 13:143–154

    Article  PubMed  CAS  Google Scholar 

  • McElroy D, Zhang W, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2:163–171

    Article  PubMed  CAS  Google Scholar 

  • Mette MF, Aufsatz W, Winden JVD, Matzke MA, Matzke AJM (2000) Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19:5194–5201

    Article  PubMed  CAS  Google Scholar 

  • Meyer P (1996) Homology-dependent gene silencing in plants. Annu Rev Plant Physiol Plant Mol Biol 47:23–48

    Article  PubMed  CAS  Google Scholar 

  • Mitra A, An G (1989) Three distinct regulatory elements comprise the upstream promoter region of the nopaline synthase gene. Mol Gen Genet 215:294–299

    Article  PubMed  CAS  Google Scholar 

  • Mitra A, Choi HK, An G (1989) Structural and functional analyses of Arabidopsis thaliana chlorophyll a/b-binding (cab) promoters. Plant Mol Biol 12:169–179

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Ni M, Cui D, Einstein J, Narasimhulu S, Vergara CE, Gelvin SB (1995) Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J 7:661–676

    Article  CAS  Google Scholar 

  • Peach C, Velten J (1991) Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17:49–60

    Article  PubMed  CAS  Google Scholar 

  • Roslan HA, Salter MG, Wood CD (2001) Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J 28:225–235

    Article  PubMed  CAS  Google Scholar 

  • Shaw CH, Carter GH, Watson MD, Shaw CH (1984) A functional map of the nopaline synthase promoter. Nucleic Acids Res 12:7831–7846

    Article  PubMed  CAS  Google Scholar 

  • Shinshi H, Usami S, Ohme-Takagi M (1995) Identification of an ethylene-responsive region in the promoter of a tobacco class I chitinase gene. Plant Mol Biol 27:923–932

    Article  PubMed  CAS  Google Scholar 

  • Sims TL, Goldberg RB (1989) The glycinin Gy1 gene from soybean. Nucleic Acids Res 17:4386

    Article  PubMed  CAS  Google Scholar 

  • Trinklein ND, Aldred SF, Hartman SJ, Schroeder DI, Otillar RP, Myers RM (2004) An abundance of bidirectional promoters in the human genome. Genome Res 14:62–66

    Article  PubMed  CAS  Google Scholar 

  • Velten J, Velten R, Hain R, Schell J (1984) Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens. EMBO J 3:2723–2730

    PubMed  CAS  Google Scholar 

  • Williams EJB, Bowles DJ (2004) Coexpression of neighboring genes in the genome of Arabidopsis thaliana. Genome Res 14:1060–1067

    Article  PubMed  CAS  Google Scholar 

  • Xie M, He Y, Gan S (2001) Bidirectionalization of polar promoters in plants. Nat Biotechnol 19:677–679

    Article  PubMed  CAS  Google Scholar 

  • Yang MQ, Taylor J, Elnitski L (2008) Comparative analyses of bidirectional promoters in vertebrates. BMC Bioinformatics 9(Suppl 6):S9

    Article  PubMed  Google Scholar 

  • Zhang C, Gai Y, Wang W, Zhu Y, Chen X, Jiang X (2008) Construction and analysis of a plant transformation binary vector pBDGG harboring a bi-directional promoter fusing dual visible reporter genes. J Genet Genomics 35:245–249

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Amber Davis and Heather Janzen for expert technical assistance. Anish Mitra was an undergraduate summer research intern. This work was supported in part by grants from USDA-NRI and NSF to AM, a contribution of the University of Nebraska Agricultural Research Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, A., Han, J., Zhang, Z.J. et al. The intergenic region of Arabidopsis thaliana cab1 and cab2 divergent genes functions as a bidirectional promoter. Planta 229, 1015–1022 (2009). https://doi.org/10.1007/s00425-008-0859-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0859-1

Keywords

Navigation