Skip to main content
Log in

High order approximations of solutions to initial value problems for linear fractional integro-differential equations

  • Original Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We consider a general class of linear integro-differential equations with Caputo fractional derivatives and weakly singular kernels. First, the underlying initial value problem is reformulated as an integral equation and the possible singular behavior of its exact solution is determined. After that, using a suitable smoothing transformation and spline collocation techniques, the numerical solution of the problem is discussed. Optimal convergence estimates are derived and a superconvergence result of the proposed method is established. The obtained theoretical results are supported by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baleanu, D., Diethelm, K., Trujillo, J.J.: Fractional Calculus. Models and Numerical Methods. World Scientific Publishing Co. Pte. Ltd, Singapore (2016)

    Book  MATH  Google Scholar 

  2. Baratella, P., Orsi, A.P.: A new approach to the numerical solution of weakly singular Volterra integral equations. J. Comput. Appl. Math. 163, 401–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brunner, H., Pedas, A., Vainikko, G.: Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 39, 957–982 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cardone, A., Conte, D., Paternoster, B.: Stability of two-step spline collocation methods for initial value problems for fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 115, 106726 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.: Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194, 743–773 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  7. Diethelm, K., Ford, N.J.: A note on the well-posedness of terminal value problems for fractional differential equations. J. Integral Equ. Appl. 30, 371–376 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Diethelm, K., Garrappa, R., Giusti, A., Stynes, M.: Why fractional derivatives with nonsingular kernels should not be used. Fract. Calc. Appl. Anal. 23(3), 610–634 (2020). https://doi.org/10.1515/fca-2020-0032

    Article  MathSciNet  MATH  Google Scholar 

  9. Diethelm, K., Tuan, H.T.: Upper and lower estimates for the separation of solutions to fractional differential equations. Fract. Calc. Appl. Anal. 25(1), 166–180 (2022). https://doi.org/10.1007/s13540-021-00007-x

    Article  MathSciNet  MATH  Google Scholar 

  10. Diethelm, K., Kiryakova, V., Luchko, Y., Machado, J.A.T., Tarasov, V.E.: Trends, directions for further research, and some open problems of fractional calculus. Nonlinear Dyn. 107, 3245–3270 (2022)

    Article  Google Scholar 

  11. Diogo, T., McKee, S., Tang, T.: Collocation methods for second-kind Volterra integral equations with weakly singular kernels. Proc. Royal Soc. Edinburgh 124, 199–210 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diogo, T., Lima, P., Pedas, A., Vainikko, G.: Smoothing transformation and spline collocation for weakly singular Volterra integro-differential equations. Appl. Num. Math. 114, 63–76 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26, 333–346 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ford, N.J., Connoly, J.A.: Systems-based decomposition schemes for approximate solution of multi-term fractional differential equations. J. Comput. Appl. Math. 229, 382–391 (2009)

    Article  MathSciNet  Google Scholar 

  15. Ford, N.J., Morgado, M.L., Rebelo, M.: A nonpolynomial collocation method for fractional terminal value problems. Comput. Appl. Math. 275, 392–402 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garrappa, R.: Numerical solution of fractional differential equations: A survey and a software tutorial. Mathematics 6, 16 (2018)

    Article  MATH  Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  18. Kolk, M., Pedas, A.: Numerical solution of Volterra integral equations with weakly singular kernels which may have a boundary singularity. Math. Model. Anal. 14, 79–89 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolk, M., Pedas, A., Tamme, E.: Modified spline collocation for linear fractional differential equations. J. Comput. Appl. Math. 283, 28–40 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kolk, M., Pedas, A., Tamme, E.: Smoothing transformation and spline collocation for linear fractional boundary value problems. Appl. Math. Comput. 283, 234–250 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Kopteva, N., Stynes, M.: An efficient collocation method for a Caputo two-point boundary value problem. BIT Numer. Math. 55, 1105–1123 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leonenko, N., Podlubny, I.: Monte-Carlo method for fractional-order differentiation. Fract. Calc. Appl. Anal. 25(2), 346–361 (2022). https://doi.org/10.1007/s13540-022-00017-3

    Article  MathSciNet  MATH  Google Scholar 

  23. Leonenko, N., Podlubny, I.: Monte-Carlo method for fractional-order differentiation extended to higher orders. Fract. Calc. Appl. Anal. 25(3), 841–857 (2022). https://doi.org/10.1007/s13540-022-00048-w

    Article  MathSciNet  MATH  Google Scholar 

  24. Liang, H., Stynes, M.: Collocation methods for general Caputo two-point boundary value problems. J. Sci. Comput. 76, 390–425 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Y., Roberts, J., Yan, Y.: Detailed error analysis for a fractional Adams method with graded meshes. Numer. Algor. 78(4), 1195–1216 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Luchko, Y.: Fractional derivatives and the fundamental theorem of fractional calculus. Fract. Calc. Appl. Anal. 23(4), 939–966 (2020). https://doi.org/10.1515/fca-2020-0049

    Article  MathSciNet  MATH  Google Scholar 

  27. Monegato, G., Scuderi, L.: High order methods for weakly singular integral equations with nonsmooth input functions. Math. Comput. 67, 1493–1515 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Parts, I., Pedas, A., Tamme, E.: Piecewise polynomial collocation for Fredholm integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 43(5), 1897–1911 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pedas, A., Vainikko, G.: Smoothing transformation and piecewise polynomial collocation for weakly singular Volterra integral equations. Computing 73, 271–293 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pedas, A., Tamme, E.: Spline collocation methods for linear multi-term fractional differential equations. J. Comput. Appl. Math. 236, 167–176 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pedas, A., Tamme, E., Vikerpuur, M.: Smoothing transformation and spline collocation for nonlinear fractional initial and boundary value problems. J. Comput. Appl. Math. 317, 1–16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Pedas, A., Tamme, E., Vikerpuur, M.: Numerical solution of linear fractional weakly singular integro-differential equations with integral boundary conditions. Appl. Num. Math. 149, 124–140 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pedas, A., Vikerpuur, M.: Spline collocation for multi-term fractional integro-differential equations with weakly singular kernels. Fract. Fractional 5, 90 (2021)

    Article  Google Scholar 

  34. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  35. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  36. Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y.: A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simulat. 64, 213–231 (2018)

    Article  MATH  Google Scholar 

  37. Vainikko, G.: Multidimensional Weakly Singular Integral Equations. Lecture Notes Math., vol. 1549. Springer, Berlin (1993)

    MATH  Google Scholar 

  38. Vainikko, G.: Which functions are fractionally differentiable? Z. Anal. Anwend. 35, 465–487 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Velasco, M.P., Usero, D., Jiménez, S., Vázquez, L., Vázquez-Poletti, J.L., Mortazavi, M.: About some possible implementations of the fractional calculus. Mathematics 8, 893 (2020)

    Article  Google Scholar 

  40. Vikerpuur, M.: Two collocation type methods for fractional differential equations with non-local boundary conditions. Math. Model. Anal. 22, 654–670 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhao, J., Xiao, J., Ford, N.J.: Collocation methods for fractional integro-differential equations with weakly singular kernels. Numer. Algor. 65, 723–743 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank both reviewers for their insightful remarks. The research of A. Pedas and M. Vikerpuur was supported by Estonian Research Council Grant PRG864.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikk Vikerpuur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ford, N.J., Pedas, A. & Vikerpuur, M. High order approximations of solutions to initial value problems for linear fractional integro-differential equations. Fract Calc Appl Anal 26, 2069–2100 (2023). https://doi.org/10.1007/s13540-023-00186-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13540-023-00186-9

Keywords

Mathematics Subject Classification

Navigation