Skip to main content
Log in

Analysis of Wave Propagation in Hybrid Metamaterial Structure for Terahertz Applications

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Advancements in electronic warfare systems and radio transmission in modern technologies utilize the metamaterial in antenna systems to boost the entire system’s effectiveness. This paper proposes a metamaterial antenna for current wireless systems with an effective data rate. The split ring resonator (SRR) metamaterial is implanted in the radiating patch in a novel and distinctive way, introducing subwavelength mechanisms into the patch cavity and causing a broad bandwidth antenna with great performance features. This paper proposed the unique shape of a hybrid SRR such as the pentagonal outer ring and triangular inner ring in the radiating element. Further, the thickness of both rings is optimized to enhance the antenna performance. The simulated result of the optimized hybrid SRR structure is − 66.55 dB return loss with a maximum gain of 8.73 dBi. The proposed metamaterial antenna is suitable for various applications like biomedical devices, high-speed imaging, sensing, and terahertz (THz) communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. X. Lu, S. Venkatesh, H. Saeidi, A review on applications of integrated terahertz systems. China Commun. 18(5), 175–201 (2021). https://doi.org/10.23919/JCC.2021.05.011

    Article  Google Scholar 

  2. F. Meyer, T. Vogel, S. Ahmed, C.J. Saraceno, Single-cycle, MHz repetition rate THz source with 66 mW of average power. Opt. Lett. 45(9), 2494–2497 (2020). https://doi.org/10.1364/OL.386305

    Article  ADS  Google Scholar 

  3. E.C. Britto, K. Sagadevan, S.K. Danasegaran, S, Kumar. “Characterization of a pentagonal CSRR bandpass filter for terahertz applications.” J. Electron. Mater. (2022)

  4. E. Castro-Camus, M. Koch, D.M. Mittleman, Recent advances in terahertz imaging: 1999 to 2021. Appl. Phys. B 128, 12 (2022). https://doi.org/10.1007/s00340-021-07732-4

    Article  ADS  Google Scholar 

  5. S. Poonguzhali, A. Sivasangari, P. Ajitha, S. Lalithakumari, A. Sridevi, S.K. Danasegaran,  “Design and performance analysis of smart photonic sensors for industrial applications.” Curr. Appl. Phys. 39, 183–189 (2022)

  6. S.K. Danasegaran, E.C. Britto, S. Poonguzhali, “Smart gas sensor based on photonic crystal for sensing perilous gases: industrial and mining applications.” Energy Sources A Recovery Util. Environ. Eff. 44(3), 7564–7572 (2022). https://doi.org/10.1080/15567036.2022.2115583

    Article  Google Scholar 

  7. M.N. Moussa, M.A. Madi, K.Y. Kabalan, Breast tumor detection, sizing and localization using a 24-element antenna array. IEEE J. Biomed. Health Inform. 26(10), 5109–5121 (2022). https://doi.org/10.1109/JBHI.2022.3189640

    Article  Google Scholar 

  8. M. Slimi, B. Jmai, H. Dinis, A. Gharsallah, P.M. Mendes, Metamaterial Vivaldi antenna array for breast cancer detection. Sens. (Basel). 22(10), 3945 (2022). https://doi.org/10.3390/s22103945. (PMID: 35632355; PMCID: PMC9144498)

    Article  ADS  Google Scholar 

  9. P.K. Rao, R. Mishra, Elliptical shape flexible MIMO antenna with high isolation for breast cancer detection application. IETE J. Res. (2020). https://doi.org/10.1080/03772063.2020.1819887

    Article  Google Scholar 

  10. E.C. Britto, S.K. Danasegaran, S.C. Xavier, J. Jeyaseelan, “Soil nutrient detection based on photonic crystal hexagonal resonator for smart farming.” Braz. J. Phys. 51, 1274 (2021). https://doi.org/10.1007/s13538-021-00915-6

  11. H. Vettikalladi et al., Sub-THz antenna for high speed wireless communication systems. Int. J. Antenna Propag. 2019, 1–9 (2019)

    Article  Google Scholar 

  12. E.C. Britto, S.K. Danasegaran, S.C. Xavier, S. Lalithakumari, “ Investigation of electromagnetic wave propagation in a defected photonic crystal square lattice structure.” J. Electron. Mater. 52(6), 1177–1185, (2022). https://doi.org/10.1007/s11664-022-10058-2

  13. I. Aggarwal, S. Pandey, M.R. Tripathy, A. Mittal, A compact high gain metamaterial-based antenna for terahertz applications. J. Electron. Mater. 51, 4589–4600 (2022). https://doi.org/10.1007/s11664-022-09716-2

    Article  ADS  Google Scholar 

  14. A. Vahdati, F. Parandin, Antenna patch design using a photonic crystal substrate at a frequency of 1.6 THz. Wireless Pers. Commun. 109(4), 2213–2219 (2019)

    Article  Google Scholar 

  15. M.N. Hocini, D. Temmar, M. Khedrouchem, M. Zamani, ‘Novel approach for the design and analysis of a terahertz microstrip patch antenna based on photonic crystals.’ Photonics Nanostructures - Fundam. Appl. 36 100723 (2019)

  16. A.B. Devarapalli, T. Moyra, Design of a metamaterial loaded W-shaped patch antenna with FSS for improved bandwidth and gain. SILICON (2022). https://doi.org/10.1007/s12633-022-02123-6

    Article  Google Scholar 

  17. K. Mondal, D.C. Sarkar, P.P. Sarkar, 5 × 5 matrix patch type frequency selective surface based miniaturized enhanced gain broadband microstrip antenna for WLAN/WiMAX /ISM band applications. Prog. Electromagn. Res. C 89, 207-219 (2019). https://doi.org/10.2528/PIERC18110803 

  18. A. Swetha, K.R Naidu, "Gain enhancement of an UWB antenna based on a FSS reflector for broadband applications." Prog. Electromagn. Res. C. 99, 193-208 (2020). https://doi.org/10.2528/PIERC19120905

  19. D.D. Nguyen, C. Seo, A wideband high gain trapezoidal monopole antenna backed by frequency selective surface. Microw. Opt. Technol. Lett. 63, 2392–2399 (2021). https://doi.org/10.1002/mop.32890

    Article  Google Scholar 

  20. S. Maity, T. Tewary, S. Mukherjee, A. Roy, P.P. Sarkar, PP Bhunia, S. Wideband hybrid microstrip patch antenna and gain improvement using frequency selective surface. Int. J. Commun. Syst. 35( 14), e5268 (2022). https://doi.org/10.1002/dac.5268

  21. B. Bag, K. Mondal, PP. Sarkar, Dual-band dual-sense broadband circularly polarized parasitic ring loaded monopole antenna for satellite applications. Int. J. Commun. Syst. 35( 14), e5258 (2022). https://doi.org/10.1002/dac.5258

  22. M. Esfandiyari, A. Lalbakhsh, S. Jarchi, M. Ghaffari-Miab, H.N. Mahtaj, R.B.V.B. Simorangkir, Tunable terahertz filter/antenna-sensor using graphene-based metamaterials, Mater. Des. 220, (2022). https://doi.org/10.1016/j.matdes.2022.110855

  23. S.S. Al-Bawri, M.T. Islam, M.S. Islam, M. Jit Singh, H. Alsaif, Massive metamaterial system-loaded MIMO antenna array for 5G base stations. Sci. Rep. 12, 14311 (2022). https://doi.org/10.1038/s41598-022-18329-y

    Article  ADS  Google Scholar 

  24. M. Slimi, B. Jmai, H. Dinis, A. Gharsallah, Microwave imaging for breast tumor detection using a CPW antenna. Indian J. Sci. Technol. 15(13), 554–560 (2022). https://doi.org/10.17485/IJST/v15i13.1974

  25. G. Geetharamani, T. Aathmanesan, Metamaterial inspired THz antenna for breast cancer detection. SN Appl. Sci.  1, 595 (2019). https://doi.org/10.1007/s42452-019-0601-6

    Article  Google Scholar 

  26. K.N. Olan-Nuñez, R.S. Murphy-Arteaga, A novel metamaterial-based antenna for on-chip applications for the 72.5–81 GHz frequency range. Sci. Rep. 12, 1699 (2022)

  27. Q. Li, W. Li, B. Ren, L. Zhang, B. Zhang, A silicon-based on-chip antenna operating at 77GHz. In 2019 Photonics & Electromagnetics Research Symposium-Fall (PIERS-Fall) 2848–2852 (2019). https://doi.org/10.1109/PIERS-Fall48861.2019.9021682

  28. C. Mustacchio, L. Boccia, E. Arnieri, G. Amendola, Gain enhancement technique for on-chip monopole antenna. In Proceedings of the 50th European Microwave Conference (EuMC). 650–653, (2021). https://doi.org/10.23919/EuMC48046.2021.9338160

  29. X. Xue, R. Shanmugam, S. Palanisamy, O.I. Khalaf, D. Selvaraj, G.M. Abdulsahib,  " A hybrid cross layer with Harris-Hawk-optimization-based efficient routing for wireless sensor networks" Sym. 15(2), 438. (2023). https://doi.org/10.3390/sym15020438

  30. V. Cherappa, T. Thangarajan, S.S. Meenakshi Sundaram, F. Hajjej, A.K. Munusamy, R. Shanmugam, "Energy-efficient clustering and routing using ASFO and a cross-layer-based expedient routing protocol for wireless sensor networks" Sens. 23(5), 2788 (2023). https://doi.org/10.3390/s23052788

  31. A. Sivasangari, D. Deepa, P. Ajitha, R.M. Gomathi, R. Vignesh, S.K. Danasegaran, S. Poonguzhali, “Performance analysis of metamaterial patch antenna characteristics for advanced high speed wireless system”. J. Electron. Mater. 52, 4785–4792 (2023)

  32. U. Nilabar Nisha, A. Manikandan, C. Venkataramanan, R. Dhanapal, 2023, "A score based link delay aware routing protocol to improve energy optimization in wireless sensor network". J. Eng. Res. 100115 (2023). https://doi.org/10.1016/j.jer.2023.100115

  33. E.C. Britto, S.K. Danasegaran, S.C. Xavier, A. Sridevi, A.R.S. Batcha, Study of various beamformers and smart antenna adaptive algorithms for mobile communication. In: Malik, P.K., Lu, J., Madhav, B.T.P., Kalkhambkar, G., Amit, S. (eds) Smart Antennas. EAI/Springer Innovations in Communication and Computing. Springer, Cham. (2022). https://doi.org/10.1007/978-3-030-76636-8_10

  34. S. Al-Otaibi, V. Cherappa, T. Thangarajan, R. Shanmugam, P. Ananth, S. Arulswamy,  "Hybrid K-medoids with energy-efficient sunflower optimization algorithm for wireless sensor networks" Sustainability 15(7), 5759 (2023). https://doi.org/10.3390/su15075759

  35. D.S. Kumar, B.E. Caroline, N.S. Preethi and M. Lokeshwar, "Design and analysis of high pace terahertz antenna," 2021 International Conference on System, Computation, Automation and Networking (ICSCAN), Puducherry, India, 1–6, (2021). https://doi.org/10.1109/ICSCAN53069.2021.9526543

  36. D.S. Kumar, B.E. Caroline, K. Sagadevan, G. Sakthiganesh, R. Saravanan, "Investigation of high directional gain pentagonal shaped patch antenna," 2020 7th International Conference on Smart Structures and Systems (ICSSS), Chennai, India, 1–6 (2020). https://doi.org/10.1109/ICSSS49621.2020.9202223

  37. S.K. Danasegaran, E.C. Britto, K. Sagadevan, S.C. Xavier, High-frequency photonic crystal-based terahertz antenna for medical applications. In: Dhanabalan, S.S., Thirumurugan, A., Raju, R., Kamaraj, SK., Thirumaran, S. (eds) Photonic crystal and its applications for next generation systems. Springer Tracts in Electrical and Electronics Engineering. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-2548-3_11

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Author Sathish Kumar designed and simulated the proposed work, authors Lalitha Kumari and Pandian have written the complete manuscript, and authors Rajalakshmi and Caroline verified the simulated result and revised the manuscript.

Corresponding author

Correspondence to Sathish Kumar Danasegaran.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalithakumari, S., Danasegaran, S.K., Rajalakshmi, G. et al. Analysis of Wave Propagation in Hybrid Metamaterial Structure for Terahertz Applications. Braz J Phys 53, 140 (2023). https://doi.org/10.1007/s13538-023-01351-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-023-01351-4

Keywords

Navigation